Multi-scale relational graph convolutional network for multiple instance learning in histopathology images

人工智能 计算机科学 放大倍数 图形 模式识别(心理学) 卷积神经网络 嵌入 理论计算机科学
作者
Roozbeh Bazargani,Ladan Fazli,Martin Gleave,Larry Goldenberg,Ali Bashashati,Septimiu E. Salcudean
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:96: 103197-103197 被引量:1
标识
DOI:10.1016/j.media.2024.103197
摘要

Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with either homogeneous graphs or only different node types. In order to leverage the multi-magnification information and improve message passing with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. We define separate message-passing neural networks based on node and edge types to pass the information between different magnification embedding spaces. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on several source and held-out datasets. Our method outperforms the state-of-the-art on all of the datasets and image types consisting of tissue microarrays, whole-mount slide regions, and whole-slide images. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明发布了新的文献求助10
2秒前
2秒前
3秒前
jzs完成签到 ,获得积分10
4秒前
7秒前
sxx发布了新的文献求助10
7秒前
断棍豪斯发布了新的文献求助10
7秒前
8秒前
微笑芷蕾发布了新的文献求助10
9秒前
xiaoyuanbao1988应助jingxian采纳,获得10
9秒前
9秒前
晚星就位发布了新的文献求助10
10秒前
徐慕源完成签到,获得积分10
10秒前
小底发布了新的文献求助10
12秒前
黎明完成签到,获得积分20
12秒前
酷波er应助陈苗采纳,获得10
12秒前
鬲木发布了新的文献求助10
14秒前
Sherry发布了新的文献求助10
15秒前
a3979107完成签到,获得积分10
15秒前
xiaoxiao完成签到,获得积分10
16秒前
天天快乐应助桀桀桀采纳,获得10
18秒前
19秒前
小蘑菇应助鬲木采纳,获得10
19秒前
21秒前
21秒前
22秒前
Rita应助congenialboy采纳,获得10
22秒前
希望天下0贩的0应助帅男采纳,获得10
23秒前
赘婿应助Jacquielin采纳,获得10
24秒前
25秒前
林先生完成签到,获得积分10
26秒前
彭于晏应助跳跃绯采纳,获得10
26秒前
老迟到的战斗机关注了科研通微信公众号
28秒前
28秒前
29秒前
29秒前
30秒前
江沅发布了新的文献求助10
30秒前
bxbxbx完成签到,获得积分20
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176