已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-scale relational graph convolutional network for multiple instance learning in histopathology images

人工智能 计算机科学 放大倍数 图形 模式识别(心理学) 卷积神经网络 嵌入 理论计算机科学
作者
Roozbeh Bazargani,Ladan Fazli,Martin Gleave,Larry Goldenberg,Ali Bashashati,Septimiu E. Salcudean
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:96: 103197-103197 被引量:1
标识
DOI:10.1016/j.media.2024.103197
摘要

Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with either homogeneous graphs or only different node types. In order to leverage the multi-magnification information and improve message passing with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. We define separate message-passing neural networks based on node and edge types to pass the information between different magnification embedding spaces. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on several source and held-out datasets. Our method outperforms the state-of-the-art on all of the datasets and image types consisting of tissue microarrays, whole-mount slide regions, and whole-slide images. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fanfan完成签到,获得积分10
1秒前
走走发布了新的文献求助10
2秒前
2秒前
乐乐应助失眠无声采纳,获得10
3秒前
zhaochenyu完成签到,获得积分10
4秒前
liaojun发布了新的文献求助10
5秒前
7秒前
ronnie完成签到,获得积分10
9秒前
10秒前
12秒前
隐形曼青应助Ally采纳,获得10
13秒前
xcc完成签到,获得积分10
17秒前
Hello应助可靠的寒风采纳,获得10
18秒前
19秒前
可爱牛青完成签到,获得积分10
19秒前
20秒前
20秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
21秒前
小杭76应助哦吼吼采纳,获得10
22秒前
24秒前
123发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
cccccgggmmm完成签到,获得积分10
26秒前
852应助挡挡采纳,获得10
28秒前
云淡风清完成签到 ,获得积分10
30秒前
akeake发布了新的文献求助10
30秒前
小杭76应助哦吼吼采纳,获得10
32秒前
33秒前
33秒前
15359015265发布了新的文献求助10
35秒前
37秒前
37秒前
饱满老鼠发布了新的文献求助10
37秒前
37秒前
新宇完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396