Cancer incidence and digital information seeking in Germany: a retrospective observational study

入射(几何) 医学 癌症登记处 癌症 乳腺癌 人口学 地理 内科学 物理 光学 社会学
作者
Hannah Wecker,Daniel Maier,Stefanie Ziehfreund,Fabienne A.U. Fox,Ian Erhard,Jörg Janne Vehreschild,Alexander Zink
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-60267-4
摘要

Abstract Awareness is vital for cancer prevention. US studies show a strong link between web searches and cancer incidence. In Europe, the relationship remains unclear. This study characterizes regional and temporal relationships between cancer incidence and web searches and investigates the content of searches related to breast, cervical, colorectal, lung, prostate, and testicular cancer, brain tumors, and melanoma in Germany (July 2018–December 2019). Aggregate data from Google Ads Keyword Planner and national cancer registry data were analyzed. Spearman’s correlation coefficient ( r S ) examined associations between cancer incidence and web search, repeated measures correlation ( r rm ) assessed time trends and searches were qualitatively categorized. The frequency of malignancy-related web searches correlated with cancer incidence ( r S = 0.88, P = 0.007), e.g., breast cancer had more queries than the lower-incidence cervical cancer. Seasonally, incidence and searches followed similar patterns, peaking in spring and fall, except for melanoma. Correlations between entity incidence and searches (0.037 ≤ r rm ≤ 0.208) varied regionally. Keywords mainly focused on diagnosis , symptoms, and general information , with variations between entities. In Germany, web searches correlated with regional and seasonal incidence, revealing differences between North/East and South/West. These insights may help improve prevention strategies by identifying regional needs and assessing impact of awareness campaigns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
ATTENTION完成签到,获得积分10
2秒前
Naomi发布了新的文献求助10
2秒前
灰灰成长中完成签到,获得积分10
3秒前
体贴旭尧发布了新的文献求助10
3秒前
LLHHZZ发布了新的文献求助10
3秒前
3秒前
小蛤蟆发布了新的文献求助10
3秒前
by发布了新的文献求助20
3秒前
蒋大饼完成签到,获得积分10
4秒前
哈哈完成签到,获得积分10
4秒前
5秒前
Wushuang完成签到,获得积分10
5秒前
wynn发布了新的文献求助10
6秒前
E10100发布了新的文献求助10
6秒前
小小怪夏士完成签到,获得积分10
6秒前
昼夜本色发布了新的文献求助10
7秒前
steven完成签到,获得积分10
7秒前
XXQ完成签到,获得积分10
7秒前
8秒前
8秒前
深情安青应助Foalphaz采纳,获得10
8秒前
龙行天下完成签到,获得积分10
8秒前
8秒前
9秒前
absorb完成签到,获得积分20
9秒前
zzz关闭了zzz文献求助
9秒前
9秒前
kktsy完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
汤姆发布了新的文献求助10
10秒前
XD824发布了新的文献求助10
11秒前
善学以致用应助文静采纳,获得10
12秒前
你好发布了新的文献求助10
12秒前
善学以致用应助认真摆烂采纳,获得10
12秒前
慕青应助振武校尉采纳,获得10
12秒前
嘛吉发布了新的文献求助10
13秒前
孙欣阳发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791