Systematic literature review on reinforcement learning in non-communicable disease interventions

可解释性 心理干预 计算机科学 强化学习 人工智能 机器学习 非传染性疾病 风险分析(工程) 疾病 管理科学 医学 护理部 病理 经济
作者
Yanfeng Zhao,Jun Kit Chaw,Lin Liu,Sook Hui Chaw,Mei Choo Ang,Ting Tin Tin
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102901-102901 被引量:2
标识
DOI:10.1016/j.artmed.2024.102901
摘要

There is evidence that reducing modifiable risk factors and strengthening medical and health interventions can reduce early mortality and economic losses from non-communicable diseases (NCDs). Machine learning (ML) algorithms have been successfully applied to preventing and controlling NCDs. Reinforcement learning (RL) is the most promising of these approaches because of its ability to dynamically adapt interventions to NCD disease progression and its commitment to achieving long-term intervention goals. This paper reviews the preferred algorithms, data sources, design details, and obstacles to clinical application in existing studies to facilitate the early application of RL algorithms in clinical practice research for NCD interventions. We screened 40 relevant papers for quantitative and qualitative analysis using the PRISMA review flow diagram. The results show that researchers tend to use Deep Q-Network (DQN) and Actor-Critic as well as their improved or hybrid algorithms to train and validate RL models on retrospective datasets. Often, the patient's physical condition is the main defining parameter of the state space, while interventions are the main defining parameter of the action space. Mostly, changes in the patient's physical condition are used as a basis for immediate rewards to the agent. Various attempts have been made to address the challenges to clinical application, and several approaches have been proposed from existing research. However, as there is currently no universally accepted solution, the use of RL algorithms in clinical practice for NCD interventions necessitates more comprehensive responses to the issues addressed in this paper, which are safety, interpretability, training efficiency, and the technical aspect of exploitation and exploration in RL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
蓝蜻蜓发布了新的文献求助10
2秒前
木木夕云完成签到,获得积分10
2秒前
Bryan应助ABS采纳,获得10
3秒前
桐桐应助单向度的人采纳,获得10
3秒前
骆闻完成签到,获得积分10
4秒前
杨纯宇发布了新的文献求助10
5秒前
一锅炖不下完成签到 ,获得积分10
6秒前
7秒前
9秒前
小小元风发布了新的文献求助10
12秒前
12秒前
13秒前
张小鱼完成签到,获得积分10
13秒前
GGbound发布了新的文献求助10
15秒前
pluvia完成签到,获得积分10
16秒前
董昌铭完成签到 ,获得积分10
16秒前
ryan发布了新的文献求助10
18秒前
wanci应助raolixiang采纳,获得10
19秒前
19秒前
小小发布了新的文献求助10
19秒前
20秒前
好滴捏发布了新的文献求助10
23秒前
000发布了新的文献求助10
23秒前
25秒前
刘丽梅完成签到 ,获得积分10
31秒前
勤恳的从波关注了科研通微信公众号
31秒前
顾矜应助好滴捏采纳,获得10
32秒前
彭于晏应助好滴捏采纳,获得10
32秒前
33秒前
34秒前
汉堡包应助165410203读书周采纳,获得10
35秒前
35秒前
华仔应助石一采纳,获得10
36秒前
Rt发布了新的文献求助30
37秒前
39秒前
子訡发布了新的文献求助10
39秒前
半枝桃完成签到 ,获得积分10
41秒前
Zjx关闭了Zjx文献求助
42秒前
XFaning发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662