Systematic literature review on reinforcement learning in non-communicable disease interventions

可解释性 心理干预 计算机科学 强化学习 人工智能 机器学习 非传染性疾病 风险分析(工程) 疾病 管理科学 医学 护理部 病理 经济
作者
Yanfeng Zhao,Jun Kit Chaw,Lin Liu,Sook Hui Chaw,Mei Choo Ang,Tin Tin Ting
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:154: 102901-102901
标识
DOI:10.1016/j.artmed.2024.102901
摘要

There is evidence that reducing modifiable risk factors and strengthening medical and health interventions can reduce early mortality and economic losses from non-communicable diseases (NCDs). Machine learning (ML) algorithms have been successfully applied to preventing and controlling NCDs. Reinforcement learning (RL) is the most promising of these approaches because of its ability to dynamically adapt interventions to NCD disease progression and its commitment to achieving long-term intervention goals. This paper reviews the preferred algorithms, data sources, design details, and obstacles to clinical application in existing studies to facilitate the early application of RL algorithms in clinical practice research for NCD interventions. We screened 40 relevant papers for quantitative and qualitative analysis using the PRISMA review flow diagram. The results show that researchers tend to use Deep Q-Network (DQN) and Actor-Critic as well as their improved or hybrid algorithms to train and validate RL models on retrospective datasets. Often, the patient's physical condition is the main defining parameter of the state space, while interventions are the main defining parameter of the action space. Mostly, changes in the patient's physical condition are used as a basis for immediate rewards to the agent. Various attempts have been made to address the challenges to clinical application, and several approaches have been proposed from existing research. However, as there is currently no universally accepted solution, the use of RL algorithms in clinical practice for NCD interventions necessitates more comprehensive responses to the issues addressed in this paper, which are safety, interpretability, training efficiency, and the technical aspect of exploitation and exploration in RL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Passskd发布了新的文献求助80
刚刚
刚刚
Ava应助呆萌芙蓉采纳,获得10
刚刚
在远方发布了新的文献求助10
1秒前
菠萝菠萝哒应助含章采纳,获得10
2秒前
cyskdsn发布了新的文献求助10
3秒前
杨震发布了新的文献求助30
4秒前
乐乐应助搞怪的芷云采纳,获得10
4秒前
乖拉发布了新的文献求助20
4秒前
寂寞的湘发布了新的文献求助50
5秒前
5秒前
大家好完成签到 ,获得积分10
5秒前
zhangmy1989发布了新的文献求助10
5秒前
6秒前
7秒前
缓慢洋葱完成签到 ,获得积分10
9秒前
cocolu举报甄开心求助涉嫌违规
9秒前
lllzz发布了新的文献求助10
11秒前
11秒前
可爱的函函应助沉默的婴采纳,获得10
11秒前
zyvl发布了新的文献求助30
12秒前
baobao发布了新的文献求助10
13秒前
13秒前
邓大卫完成签到,获得积分10
13秒前
CodeCraft应助杨枝甘露采纳,获得10
13秒前
称心的青旋完成签到,获得积分10
14秒前
zy完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
淡淡的小懒虫应助邓大卫采纳,获得10
18秒前
hyg关闭了hyg文献求助
19秒前
19秒前
20秒前
小彤完成签到 ,获得积分10
21秒前
goldNAN发布了新的文献求助10
23秒前
顾矜应助火星上冬莲采纳,获得30
25秒前
baobao完成签到,获得积分20
26秒前
26秒前
27秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343504
求助须知:如何正确求助?哪些是违规求助? 2970547
关于积分的说明 8644499
捐赠科研通 2650612
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661545