亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Medical Imaging Segmentation with GB-SAM: A Novel Approach to Tissue Segmentation Using Granular Box Prompts

分割 计算机科学 人工智能 计算机视觉 图像分割 医学影像学 生物医学工程 模式识别(心理学) 医学
作者
Ismael Villanueva-Miranda,Ruichen Rong,Peiran Quan,Zhuoyu Wen,Xiaowei Zhan,Donghan M. Yang,Zhikai Chi,Yang Xie,Guanghua Xiao
出处
期刊:Cancers [MDPI AG]
卷期号:16 (13): 2391-2391
标识
DOI:10.3390/cancers16132391
摘要

Recent advances in foundation models have revolutionized model development in digital pathology, reducing dependence on extensive manual annotations required by traditional methods. The ability of foundation models to generalize well with few-shot learning addresses critical barriers in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM) fine-tuned using granular box prompts with limited training data. The GB-SAM aims to reduce the dependency on expert pathologist annotators by enhancing the efficiency of the automated annotation process. Granular box prompts are small box regions derived from ground truth masks, conceived to replace the conventional approach of using a single large box covering the entire H&E-stained image patch. This method allows a localized and detailed analysis of gland morphology, enhancing the segmentation accuracy of individual glands and reducing the ambiguity that larger boxes might introduce in morphologically complex regions. We compared the performance of our GB-SAM model against U-Net trained on different sizes of the CRAG dataset. We evaluated the models across histopathological datasets, including CRAG, GlaS, and Camelyon16. GB-SAM consistently outperformed U-Net, with reduced training data, showing less segmentation performance degradation. Specifically, on the CRAG dataset, GB-SAM achieved a Dice coefficient of 0.885 compared to U-Net's 0.857 when trained on 25% of the data. Additionally, GB-SAM demonstrated segmentation stability on the CRAG testing dataset and superior generalization across unseen datasets, including challenging lymph node segmentation in Camelyon16, which achieved a Dice coefficient of 0.740 versus U-Net's 0.491. Furthermore, compared to SAM-Path and Med-SAM, GB-SAM showed competitive performance. GB-SAM achieved a Dice score of 0.900 on the CRAG dataset, while SAM-Path achieved 0.884. On the GlaS dataset, Med-SAM reported a Dice score of 0.956, whereas GB-SAM achieved 0.885 with significantly less training data. These results highlight GB-SAM's advanced segmentation capabilities and reduced dependency on large datasets, indicating its potential for practical deployment in digital pathology, particularly in settings with limited annotated datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助spark810采纳,获得10
3秒前
褚明雪完成签到,获得积分10
44秒前
科研通AI2S应助LBJ23采纳,获得10
52秒前
master-f完成签到 ,获得积分10
59秒前
LBJ23完成签到,获得积分10
1分钟前
端庄半凡完成签到 ,获得积分10
1分钟前
深情安青应助spark810采纳,获得10
1分钟前
1分钟前
zai完成签到 ,获得积分20
2分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
3分钟前
jm发布了新的文献求助10
4分钟前
李健应助jm采纳,获得10
4分钟前
4分钟前
白桦发布了新的文献求助10
4分钟前
Xiaxia完成签到,获得积分10
4分钟前
mochalv123完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
领导范儿应助愿祖国富强采纳,获得10
5分钟前
康康XY发布了新的文献求助10
5分钟前
隐形曼青应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
dxljlxgcgc完成签到,获得积分10
9分钟前
chiazy完成签到 ,获得积分10
12分钟前
默默孱完成签到 ,获得积分10
13分钟前
早晚完成签到 ,获得积分10
14分钟前
唠叨的天亦完成签到 ,获得积分10
16分钟前
mengyuhuan完成签到 ,获得积分0
18分钟前
AUGKING27完成签到 ,获得积分10
18分钟前
yinlao完成签到,获得积分10
18分钟前
cxg完成签到,获得积分10
18分钟前
cxg发布了新的文献求助10
19分钟前
明亮的问薇完成签到,获得积分10
19分钟前
JamesPei应助科研通管家采纳,获得10
19分钟前
19分钟前
完美世界应助烽烽烽采纳,获得30
19分钟前
19分钟前
烽烽烽发布了新的文献求助30
20分钟前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121645
求助须知:如何正确求助?哪些是违规求助? 2772108
关于积分的说明 7710913
捐赠科研通 2427435
什么是DOI,文献DOI怎么找? 1289328
科研通“疑难数据库(出版商)”最低求助积分说明 621386
版权声明 600145