Enhancing Medical Imaging Segmentation with GB-SAM: A Novel Approach to Tissue Segmentation Using Granular Box Prompts

分割 计算机科学 人工智能 计算机视觉 图像分割 医学影像学 生物医学工程 模式识别(心理学) 医学
作者
Ismael Villanueva-Miranda,Ruichen Rong,Peiran Quan,Zhuoyu Wen,Xiaowei Zhan,Donghan M. Yang,Zhikai Chi,Yang Xie,Guanghua Xiao
出处
期刊:Cancers [MDPI AG]
卷期号:16 (13): 2391-2391 被引量:1
标识
DOI:10.3390/cancers16132391
摘要

Recent advances in foundation models have revolutionized model development in digital pathology, reducing dependence on extensive manual annotations required by traditional methods. The ability of foundation models to generalize well with few-shot learning addresses critical barriers in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM) fine-tuned using granular box prompts with limited training data. The GB-SAM aims to reduce the dependency on expert pathologist annotators by enhancing the efficiency of the automated annotation process. Granular box prompts are small box regions derived from ground truth masks, conceived to replace the conventional approach of using a single large box covering the entire H&E-stained image patch. This method allows a localized and detailed analysis of gland morphology, enhancing the segmentation accuracy of individual glands and reducing the ambiguity that larger boxes might introduce in morphologically complex regions. We compared the performance of our GB-SAM model against U-Net trained on different sizes of the CRAG dataset. We evaluated the models across histopathological datasets, including CRAG, GlaS, and Camelyon16. GB-SAM consistently outperformed U-Net, with reduced training data, showing less segmentation performance degradation. Specifically, on the CRAG dataset, GB-SAM achieved a Dice coefficient of 0.885 compared to U-Net’s 0.857 when trained on 25% of the data. Additionally, GB-SAM demonstrated segmentation stability on the CRAG testing dataset and superior generalization across unseen datasets, including challenging lymph node segmentation in Camelyon16, which achieved a Dice coefficient of 0.740 versus U-Net’s 0.491. Furthermore, compared to SAM-Path and Med-SAM, GB-SAM showed competitive performance. GB-SAM achieved a Dice score of 0.900 on the CRAG dataset, while SAM-Path achieved 0.884. On the GlaS dataset, Med-SAM reported a Dice score of 0.956, whereas GB-SAM achieved 0.885 with significantly less training data. These results highlight GB-SAM’s advanced segmentation capabilities and reduced dependency on large datasets, indicating its potential for practical deployment in digital pathology, particularly in settings with limited annotated datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
Hello应助冀晓梦采纳,获得10
刚刚
小青椒应助冷酷妙菡采纳,获得30
刚刚
wuqs发布了新的文献求助10
1秒前
甜甜完成签到,获得积分10
1秒前
qty完成签到 ,获得积分10
1秒前
梨花香发布了新的文献求助10
1秒前
Yo鹿完成签到,获得积分20
2秒前
眼睛大世开完成签到,获得积分10
2秒前
2秒前
2秒前
zone完成签到,获得积分10
2秒前
3秒前
liuzr应助忐忑的致远采纳,获得10
3秒前
3秒前
领导范儿应助22222采纳,获得10
3秒前
3秒前
颜琀樱发布了新的文献求助10
3秒前
我是哈哈超人完成签到,获得积分10
4秒前
共享精神应助诚心盼海采纳,获得10
4秒前
卜应完成签到,获得积分10
5秒前
6秒前
呜呜完成签到,获得积分10
6秒前
6秒前
cjh发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
牛康康完成签到,获得积分20
7秒前
7秒前
夜月残阳发布了新的文献求助10
7秒前
8秒前
bkagyin应助开放明雪采纳,获得10
8秒前
KEO发布了新的文献求助10
8秒前
愉快南风完成签到,获得积分10
8秒前
野性的懿轩完成签到,获得积分10
9秒前
Mobius发布了新的文献求助10
9秒前
梨花香完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608729
求助须知:如何正确求助?哪些是违规求助? 4693458
关于积分的说明 14878149
捐赠科研通 4718291
什么是DOI,文献DOI怎么找? 2544447
邀请新用户注册赠送积分活动 1509484
关于科研通互助平台的介绍 1472883