Enhancing Medical Imaging Segmentation with GB-SAM: A Novel Approach to Tissue Segmentation Using Granular Box Prompts

分割 计算机科学 人工智能 计算机视觉 图像分割 医学影像学 生物医学工程 模式识别(心理学) 医学
作者
Ismael Villanueva-Miranda,Ruichen Rong,Peiran Quan,Zhuoyu Wen,Xiaowei Zhan,Donghan M. Yang,Zhikai Chi,Yang Xie,Guanghua Xiao
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:16 (13): 2391-2391 被引量:1
标识
DOI:10.3390/cancers16132391
摘要

Recent advances in foundation models have revolutionized model development in digital pathology, reducing dependence on extensive manual annotations required by traditional methods. The ability of foundation models to generalize well with few-shot learning addresses critical barriers in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM) fine-tuned using granular box prompts with limited training data. The GB-SAM aims to reduce the dependency on expert pathologist annotators by enhancing the efficiency of the automated annotation process. Granular box prompts are small box regions derived from ground truth masks, conceived to replace the conventional approach of using a single large box covering the entire H&E-stained image patch. This method allows a localized and detailed analysis of gland morphology, enhancing the segmentation accuracy of individual glands and reducing the ambiguity that larger boxes might introduce in morphologically complex regions. We compared the performance of our GB-SAM model against U-Net trained on different sizes of the CRAG dataset. We evaluated the models across histopathological datasets, including CRAG, GlaS, and Camelyon16. GB-SAM consistently outperformed U-Net, with reduced training data, showing less segmentation performance degradation. Specifically, on the CRAG dataset, GB-SAM achieved a Dice coefficient of 0.885 compared to U-Net’s 0.857 when trained on 25% of the data. Additionally, GB-SAM demonstrated segmentation stability on the CRAG testing dataset and superior generalization across unseen datasets, including challenging lymph node segmentation in Camelyon16, which achieved a Dice coefficient of 0.740 versus U-Net’s 0.491. Furthermore, compared to SAM-Path and Med-SAM, GB-SAM showed competitive performance. GB-SAM achieved a Dice score of 0.900 on the CRAG dataset, while SAM-Path achieved 0.884. On the GlaS dataset, Med-SAM reported a Dice score of 0.956, whereas GB-SAM achieved 0.885 with significantly less training data. These results highlight GB-SAM’s advanced segmentation capabilities and reduced dependency on large datasets, indicating its potential for practical deployment in digital pathology, particularly in settings with limited annotated datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Owen应助贲立辉采纳,获得10
2秒前
3秒前
白桦林泪发布了新的文献求助10
3秒前
嘞是举仔完成签到,获得积分10
4秒前
有米饭没完成签到 ,获得积分10
5秒前
Fine发布了新的文献求助10
5秒前
九九九发布了新的文献求助10
5秒前
wish发布了新的文献求助10
7秒前
8秒前
大喵发布了新的文献求助10
8秒前
Aurora完成签到,获得积分10
10秒前
黄彤彤完成签到,获得积分10
11秒前
公冶笑白发布了新的文献求助10
12秒前
九九九完成签到,获得积分10
13秒前
雪儿完成签到 ,获得积分10
13秒前
赵杰完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
所所应助water采纳,获得10
16秒前
17秒前
充电宝应助白桦林泪采纳,获得10
17秒前
bbh发布了新的文献求助10
18秒前
11完成签到,获得积分20
18秒前
bbh发布了新的文献求助10
18秒前
卡卡罗特发布了新的文献求助10
18秒前
若空行走发布了新的文献求助10
18秒前
19秒前
bbh发布了新的文献求助10
19秒前
bbh发布了新的文献求助10
19秒前
zyyin发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
123完成签到,获得积分20
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190