已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Medical Imaging Segmentation with GB-SAM: A Novel Approach to Tissue Segmentation Using Granular Box Prompts

分割 计算机科学 人工智能 计算机视觉 图像分割 医学影像学 生物医学工程 模式识别(心理学) 医学
作者
Ismael Villanueva-Miranda,Ruichen Rong,Peiran Quan,Zhuoyu Wen,Xiaowei Zhan,Donghan M. Yang,Zhikai Chi,Yang Xie,Guanghua Xiao
出处
期刊:Cancers [MDPI AG]
卷期号:16 (13): 2391-2391 被引量:1
标识
DOI:10.3390/cancers16132391
摘要

Recent advances in foundation models have revolutionized model development in digital pathology, reducing dependence on extensive manual annotations required by traditional methods. The ability of foundation models to generalize well with few-shot learning addresses critical barriers in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM) fine-tuned using granular box prompts with limited training data. The GB-SAM aims to reduce the dependency on expert pathologist annotators by enhancing the efficiency of the automated annotation process. Granular box prompts are small box regions derived from ground truth masks, conceived to replace the conventional approach of using a single large box covering the entire H&E-stained image patch. This method allows a localized and detailed analysis of gland morphology, enhancing the segmentation accuracy of individual glands and reducing the ambiguity that larger boxes might introduce in morphologically complex regions. We compared the performance of our GB-SAM model against U-Net trained on different sizes of the CRAG dataset. We evaluated the models across histopathological datasets, including CRAG, GlaS, and Camelyon16. GB-SAM consistently outperformed U-Net, with reduced training data, showing less segmentation performance degradation. Specifically, on the CRAG dataset, GB-SAM achieved a Dice coefficient of 0.885 compared to U-Net’s 0.857 when trained on 25% of the data. Additionally, GB-SAM demonstrated segmentation stability on the CRAG testing dataset and superior generalization across unseen datasets, including challenging lymph node segmentation in Camelyon16, which achieved a Dice coefficient of 0.740 versus U-Net’s 0.491. Furthermore, compared to SAM-Path and Med-SAM, GB-SAM showed competitive performance. GB-SAM achieved a Dice score of 0.900 on the CRAG dataset, while SAM-Path achieved 0.884. On the GlaS dataset, Med-SAM reported a Dice score of 0.956, whereas GB-SAM achieved 0.885 with significantly less training data. These results highlight GB-SAM’s advanced segmentation capabilities and reduced dependency on large datasets, indicating its potential for practical deployment in digital pathology, particularly in settings with limited annotated datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
俊逸的念寒完成签到,获得积分10
2秒前
原子格致完成签到,获得积分10
4秒前
5秒前
斯文败类应助Cindy采纳,获得10
8秒前
kali完成签到 ,获得积分10
10秒前
Pan发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
CipherSage应助Jnscal采纳,获得10
14秒前
我是老大应助苻谷丝采纳,获得10
14秒前
15秒前
17秒前
隐形曼青应助工诩采纳,获得10
17秒前
xuexin完成签到,获得积分20
17秒前
美满的中蓝完成签到,获得积分10
18秒前
18秒前
科研通AI2S应助Fishchips采纳,获得10
19秒前
Pengh完成签到,获得积分10
19秒前
苯二氮卓发布了新的文献求助10
20秒前
栗惠发布了新的文献求助10
22秒前
xuexin发布了新的文献求助10
23秒前
华仔应助王王采纳,获得10
24秒前
Miriammmmm发布了新的文献求助30
25秒前
26秒前
27秒前
28秒前
Hoolyshit发布了新的文献求助10
28秒前
英姑应助Arilus采纳,获得10
28秒前
31秒前
儒雅香彤完成签到 ,获得积分10
31秒前
无花果应助ddddd11采纳,获得10
31秒前
121发布了新的文献求助10
32秒前
微熏的羊发布了新的文献求助10
32秒前
华仔应助三口神奇采纳,获得10
32秒前
behre关注了科研通微信公众号
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407380
求助须知:如何正确求助?哪些是违规求助? 4524989
关于积分的说明 14100518
捐赠科研通 4438717
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428447
关于科研通互助平台的介绍 1406479