Enhancing Medical Imaging Segmentation with GB-SAM: A Novel Approach to Tissue Segmentation Using Granular Box Prompts

分割 计算机科学 人工智能 计算机视觉 图像分割 医学影像学 生物医学工程 模式识别(心理学) 医学
作者
Ismael Villanueva-Miranda,Ruichen Rong,Peiran Quan,Zhuoyu Wen,Xiaowei Zhan,Donghan M. Yang,Zhikai Chi,Yang Xie,Guanghua Xiao
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:16 (13): 2391-2391 被引量:1
标识
DOI:10.3390/cancers16132391
摘要

Recent advances in foundation models have revolutionized model development in digital pathology, reducing dependence on extensive manual annotations required by traditional methods. The ability of foundation models to generalize well with few-shot learning addresses critical barriers in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM) fine-tuned using granular box prompts with limited training data. The GB-SAM aims to reduce the dependency on expert pathologist annotators by enhancing the efficiency of the automated annotation process. Granular box prompts are small box regions derived from ground truth masks, conceived to replace the conventional approach of using a single large box covering the entire H&E-stained image patch. This method allows a localized and detailed analysis of gland morphology, enhancing the segmentation accuracy of individual glands and reducing the ambiguity that larger boxes might introduce in morphologically complex regions. We compared the performance of our GB-SAM model against U-Net trained on different sizes of the CRAG dataset. We evaluated the models across histopathological datasets, including CRAG, GlaS, and Camelyon16. GB-SAM consistently outperformed U-Net, with reduced training data, showing less segmentation performance degradation. Specifically, on the CRAG dataset, GB-SAM achieved a Dice coefficient of 0.885 compared to U-Net’s 0.857 when trained on 25% of the data. Additionally, GB-SAM demonstrated segmentation stability on the CRAG testing dataset and superior generalization across unseen datasets, including challenging lymph node segmentation in Camelyon16, which achieved a Dice coefficient of 0.740 versus U-Net’s 0.491. Furthermore, compared to SAM-Path and Med-SAM, GB-SAM showed competitive performance. GB-SAM achieved a Dice score of 0.900 on the CRAG dataset, while SAM-Path achieved 0.884. On the GlaS dataset, Med-SAM reported a Dice score of 0.956, whereas GB-SAM achieved 0.885 with significantly less training data. These results highlight GB-SAM’s advanced segmentation capabilities and reduced dependency on large datasets, indicating its potential for practical deployment in digital pathology, particularly in settings with limited annotated datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的若菱完成签到 ,获得积分10
刚刚
幸福广山完成签到,获得积分10
2秒前
HMethod完成签到 ,获得积分10
4秒前
Y123完成签到,获得积分10
4秒前
5秒前
ersan完成签到,获得积分10
6秒前
Hello应助nkmenghan采纳,获得30
7秒前
7秒前
7秒前
粗心的听安完成签到,获得积分10
7秒前
念姬完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
指哪打哪完成签到,获得积分10
10秒前
10秒前
静静子发布了新的文献求助100
11秒前
Ray完成签到 ,获得积分10
12秒前
文静的天蓝完成签到,获得积分10
12秒前
tszjw168完成签到 ,获得积分10
13秒前
手打鱼丸完成签到 ,获得积分10
14秒前
体贴凌柏发布了新的文献求助10
14秒前
开心快乐发大财完成签到,获得积分10
16秒前
萌萌哒完成签到,获得积分10
16秒前
小龅牙吖完成签到,获得积分10
16秒前
Propitious完成签到,获得积分10
17秒前
徐先生1106完成签到,获得积分10
17秒前
Epiphany完成签到,获得积分10
18秒前
舒心的久完成签到 ,获得积分10
18秒前
闻巷雨完成签到 ,获得积分10
20秒前
北风完成签到,获得积分10
21秒前
xliiii完成签到,获得积分10
21秒前
时光倒流的鱼完成签到,获得积分10
22秒前
LL完成签到,获得积分10
22秒前
李李完成签到,获得积分20
22秒前
雨无意完成签到,获得积分10
23秒前
盛宇大天才完成签到,获得积分10
25秒前
游戏人间完成签到 ,获得积分10
26秒前
27秒前
科研通AI5应助淡淡的忆彤采纳,获得10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029