Machine Learning‐Assisted Research and Development of Chemiresistive Gas Sensors

材料科学 纳米技术
作者
Zhenyu Yuan,Xueman Luo,Fanli Meng
出处
期刊:Advanced Engineering Materials [Wiley]
卷期号:26 (20) 被引量:1
标识
DOI:10.1002/adem.202400782
摘要

The traditional trial‐and‐error testing to develop high‐performance chemiresistive gas sensors is inefficient and fails to meet the high demand for sensors in various industries. Machine learning (ML) can address the limitations of trial‐and‐error testing and can be effectively utilized for enhancing, developing, and designing sensors. This review first discusses the prediction of critical mechanism parameters of gas‐sensitive materials by ML, including adsorption energy, bandgap, thermal conductivity, and dielectric constant. Second, it proposes that ML can improve five performance indexes: selectivity, response/recovery time, stability, sensitivity, and accuracy. ML also facilitates the development and structural design of gas‐sensitive new materials. In addition, the potential of ML to optimize the sensor arrays is investigated, including reducing the number of sensors, identifying the best array combination, and improving recognition and detection capabilities. Finally, this article discusses the challenges and limitations of machine‐learning assisted chemiresistive gas sensors in practical applications and envisions their future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭富县城完成签到,获得积分10
刚刚
SSSDDDYYY发布了新的文献求助10
刚刚
刚刚
1秒前
空白掉落完成签到 ,获得积分10
2秒前
4秒前
Y123发布了新的文献求助10
4秒前
sissi应助狗子爱吃桃桃采纳,获得30
4秒前
李八八完成签到,获得积分10
5秒前
冷酷的柜门完成签到,获得积分10
6秒前
柔弱亦寒发布了新的文献求助10
7秒前
7秒前
7秒前
星辰大海应助ido采纳,获得10
7秒前
人木发布了新的文献求助10
10秒前
10秒前
11秒前
领导范儿应助梨涡采纳,获得10
11秒前
传奇3应助Yang采纳,获得10
11秒前
姜忆霜发布了新的文献求助10
11秒前
啵赞的龟丝儿完成签到,获得积分10
12秒前
13秒前
海洋调完成签到,获得积分10
13秒前
14秒前
16秒前
传奇3应助倪倪采纳,获得10
16秒前
情怀应助危机的雨梅采纳,获得10
16秒前
17秒前
18秒前
李爱国应助科研民工采纳,获得10
18秒前
程瀚砚发布了新的文献求助10
18秒前
墨点完成签到 ,获得积分10
18秒前
tang发布了新的文献求助10
19秒前
t团子发布了新的文献求助10
21秒前
JUST完成签到,获得积分10
21秒前
爆米花应助简单的芷云采纳,获得10
22秒前
朱朱朱完成签到,获得积分10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306895
求助须知:如何正确求助?哪些是违规求助? 2940756
关于积分的说明 8498339
捐赠科研通 2614923
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648297