石墨烯
锌
氧化还原
氧化物
钨
溴
材料科学
兴奋剂
复合数
无机化学
化学工程
化学
纳米技术
冶金
复合材料
光电子学
工程类
作者
Velu Duraisamy,Dabin Han,Sangaraju Shanmugam
标识
DOI:10.1016/j.jpowsour.2024.234762
摘要
Zinc-bromine redox flow batteries (Zn/Br2 RFBs) are fingerprint candidates for large-scale energy storage applications owing to their low cost, flexibility, high energy density, and astonishing round-trip efficiency. However, during the charging and discharging process, the diffusion of bromine through the porous membrane creates significant capacity decay and reduces the membrane efficiency of Zn/Br2 RFBs. In this respect, we developed various amounts of tungsten trioxide (WO3) nanoparticle-decorated graphene oxide (WO3@GO)-loaded sulfonated poly (ether ether ketone) (SPEEK) membranes and investigated their Zn/Br2 redox flow battery performance. The optimum amount of WO3@GO-loaded WO3@GO/SPEEK-3 membrane exhibits higher mechanical stability and ionic conductivity, significantly restricting the bromine crossover through the membrane. Due to their higher hydrophilic ability and uniform dispersion, WO3-loaded GO nanosheets provide strong interaction between the sulfonic acid group of the SPEEK membrane, which acts as an effective barrier for bromine crossover and significantly alters the Zn/Br2 battery performance. As a result, at a current density of 40 mA cm−2, the Zn/Br2 single cell of the WO3@GO/SPEEK-3 demonstrated higher coulombic efficiency (96.6 %), voltage efficiency (89.6 %), and energy efficiency (86.6 %), better than the WO3@GO/SPEEK-5 and pristine SPEEK membranes. These performances indicate that the proposed low-cost WO3@GO/SPEEK membrane can be highly applicable to other energy-related fields, including fuel cells and water treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI