Automatic Classification and Segmentation of Multiclass Jaw Lesions in Cone-Beam Computed Tomography using Deep Learning

锥束ct 分割 计算机断层摄影术 人工智能 Cone(正式语言) 深度学习 锥束ct 梁(结构) 计算机科学 医学 放射科 物理 光学 算法
作者
Wei Liu,Xiang Li,Chang Liu,Ge Gao,Yutao Xiong,Tao Zhu,Wei Zeng,Jixiang Guo,Wei Tang
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
标识
DOI:10.1093/dmfr/twae028
摘要

Abstract Objectives To develop and validate a modified deep learning (DL) model based on nnU-Net for classifying and segmenting five-class jaw lesions using cone-beam CT (CBCT). Methods A total of 368 CBCT scans (37 168 slices) were used to train a multi-class segmentation model. The data underwent manual annotation by two oral and maxillofacial surgeons (OMSs) to serve as ground truth. Sensitivity, specificity, precision, F1-score, and accuracy were used to evaluate the classification ability of the model and doctors, with or without artificial intelligence assistance. The dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and segmentation time were used to evaluate the segmentation effect of the model. Results The model achieved the dual task of classifying and segmenting jaw lesions in CBCT. For classification, the sensitivity, specificity, precision, and accuracy of the model were 0.871, 0.974, 0.874, and 0.891, respectively, surpassing oral and maxillofacial radiologists (OMFRs) and OMSs, approaching the specialist. With the model's assistance, the classification performance of OMFRs and OMSs improved, particularly for odontogenic keratocyst (OKC) and ameloblastoma (AM), with F1-score improvements ranging from 6.2% to 12.7%. For segmentation, the DSC was 87.2% and the ASSD was 1.359 mm. The model's average segmentation time was 40 ± 9.9 s, contrasting with 25 ± 7.2 min for OMSs. Conclusions The proposed DL model accurately and efficiently classified and segmented five classes of jaw lesions using CBCT. In addition, it could assist doctors in improving classification accuracy and segmentation efficiency, particularly in distinguishing confusing lesions (eg, AM and OKC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
我是大葱明完成签到,获得积分10
1秒前
斯文明杰完成签到,获得积分10
3秒前
研友_8Kedgn完成签到,获得积分10
3秒前
3秒前
JL发布了新的文献求助10
4秒前
从容芮应助yuanzhilong采纳,获得10
5秒前
yy发布了新的文献求助10
5秒前
5秒前
5秒前
颜沛文发布了新的文献求助10
5秒前
liran发布了新的文献求助10
6秒前
草帽发布了新的文献求助10
6秒前
h2t完成签到,获得积分10
6秒前
卡卡西发布了新的文献求助10
7秒前
NN发布了新的文献求助30
11秒前
震动的白山完成签到 ,获得积分10
11秒前
12秒前
今后应助青天如墨采纳,获得10
13秒前
14秒前
15秒前
17秒前
Zhangqiang发布了新的文献求助10
17秒前
18秒前
gy发布了新的文献求助10
18秒前
21秒前
21秒前
奋斗的猪发布了新的文献求助10
22秒前
23秒前
干净元柏发布了新的文献求助10
23秒前
地球木引力完成签到,获得积分10
27秒前
青天如墨发布了新的文献求助10
28秒前
28秒前
29秒前
32秒前
33秒前
ccc发布了新的文献求助10
34秒前
34秒前
小二郎应助卡卡西采纳,获得10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503