Short-term wind power prediction framework using numerical weather predictions and residual convolutional long short-term memory attention network

计算机科学 期限(时间) 残余物 短时记忆 短时记忆 人工智能 算法 循环神经网络 工作记忆 人工神经网络 认知 物理 量子力学 神经科学 生物
作者
Chenlei Xie,Xuelei Yang,Tao Chen,Qiansheng Fang,Jie Wang,Yan Shen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108543-108543 被引量:3
标识
DOI:10.1016/j.engappai.2024.108543
摘要

As a prominent global source of renewable energy, wind power generation had been experiencing rapid growth. The more precise prediction of short-term wind power was essential to ensure the stable and cost-effective operation of power systems. In response, a wind power prediction framework using numerical weather predictions (NWPs) and Residual Convolutional Long Short-Term Memory Attention (Res-ConvLSTM-Attention) network was proposed in this study. Addressing the issue of significant errors in individual NPW, Weighted Naive Bayes (WNB) model and Multivariate Quadratic Nonlinear Regression (NR) model were employed to fuse the four NWPs wind speed and direction characteristics respectively, aiming to obtain more accurate weather forecast data. Given the difficulty in accurately predicting due to the randomness of wind power, a Res-ConvLSTM-Attention network was proposed for short-term wind power prediction. The Res-ConvLSTM unit extracted deep spatiotemporal features while effectively alleviating network degradation and gradient vanishing issues caused by network deepening. The Attention unit allocated higher weights to key features, and their combination enhanced the accuracy of wind power prediction. Finally, using the data provided by Challenge Data for experimental analysis, the results showed that the mean absolute error (MAE), root mean square error (RMSE), mean arctangent absolute percentage error (MAAPE) and coefficient of determination (R2) value were 0.0758, 0.1163, 0.4364 and 0.946, affirming the effectiveness of the wind power prediction framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yunus完成签到,获得积分20
刚刚
orixero应助TsutsumiRyuu采纳,获得10
1秒前
丘比特应助轻松的采枫采纳,获得10
1秒前
闪闪山水完成签到,获得积分10
2秒前
2秒前
李咸咸123完成签到,获得积分10
2秒前
2秒前
morii发布了新的文献求助10
3秒前
3秒前
小僧发布了新的文献求助10
3秒前
学习吧xy完成签到,获得积分10
4秒前
xiang完成签到,获得积分10
4秒前
6秒前
是事可可完成签到,获得积分10
7秒前
东方樱发布了新的文献求助10
7秒前
慕青应助FANYAO采纳,获得10
8秒前
典雅雨寒完成签到,获得积分10
8秒前
zw发布了新的文献求助10
10秒前
小Q啊啾发布了新的文献求助10
10秒前
111完成签到,获得积分10
10秒前
10秒前
12秒前
13秒前
Yunus发布了新的文献求助20
13秒前
13秒前
14秒前
Purlunatic完成签到,获得积分10
15秒前
su关闭了su文献求助
15秒前
Lllllllll发布了新的文献求助10
16秒前
lzl完成签到,获得积分10
17秒前
17秒前
在水一方应助cy采纳,获得10
18秒前
彭于彦祖应助kingwhitewing采纳,获得50
19秒前
19秒前
Yangzx完成签到,获得积分10
20秒前
20秒前
21秒前
温朋涛完成签到 ,获得积分10
21秒前
丘比特应助Dr.Sun采纳,获得10
22秒前
JMao发布了新的文献求助20
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919