自分泌信号
旁分泌信号
转化生长因子
肾
医学
信号转导
癌症研究
转化生长因子β
内分泌学
内科学
生物
细胞生物学
受体
作者
Xuan Wang,Zeguo Sun,Jia Fu,Zhengying Fang,Weijia Zhang,John Cijiang He,Kyung Lee
标识
DOI:10.1016/j.ymthe.2024.06.027
摘要
Transforming growth factor (TGF)-β signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-β signaling regulators can substantially influence TGF-β's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-β-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-β-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-β signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-β signaling to attenuate DKD.
科研通智能强力驱动
Strongly Powered by AbleSci AI