亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigation on a lightweight defect detection model for photovoltaic panel

光伏系统 材料科学 汽车工程 工程类 电气工程
作者
Feng Bin,Kang Qiu,Zhi Zheng,Xiaofeng Lu,Lumei Du,Qiuqin Sun
出处
期刊:Measurement [Elsevier]
卷期号:236: 115121-115121 被引量:11
标识
DOI:10.1016/j.measurement.2024.115121
摘要

The detection of defect types of photovoltaic (PV) panel is a crucial task in PV system. Existing detection models face challenges in effectively balancing the trade-off between detection accuracy and resource consumption. To address this issue, this paper proposes a new defect detection method for PV panel based on the improved YOLOv8 model, which realizes both the high detection accuracy and the lightweight. Firstly, Reversible Column Networks (RevCol) is used as the Backbone of YOLOv8, which makes sure to preserve the feature information in the process of network transmission and also reduces the number of parameters and Giga floating-point operations per second (GFLOPs). Subsequently, a new lightweight Bottleneck fused with Efficient Multi-Scale Attention (EMA) is designed to optimize the CSPDarknet53 to 2-Stage FPN (C2f) module of Neck in YOLOv8 to enhance the robustness and further decrease network parameters. Finally, Squeeze-and-Excitation (SE) Attention is integrated into the Head of YOLOv8 to prioritize the important channel features and thus enhance the detection performance. The experimental results on the PVEL-AD dataset demonstrate that parameters and GFLOPs of the proposed model are declined by 38.46% and 34.39% respectively, and mAP0.5:0.95 is increased by 2.6% compared with the baseline model. The lightweight improved YOLOv8 model facilitates the deployment of deep learning model on edge devices and provides a novel approach for the online detection of PV panel defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火山蜗牛完成签到,获得积分10
17秒前
情怀应助科研通管家采纳,获得10
35秒前
情怀应助科研通管家采纳,获得10
35秒前
马上顺利完成签到,获得积分10
42秒前
59秒前
结实青丝发布了新的文献求助10
1分钟前
1分钟前
xl_c完成签到 ,获得积分10
1分钟前
Luke2完成签到 ,获得积分10
1分钟前
香蕉觅云应助柯慕玉泽采纳,获得10
1分钟前
1分钟前
脑洞疼应助只道寻常采纳,获得10
2分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
2分钟前
木有完成签到 ,获得积分10
2分钟前
2分钟前
柯慕玉泽发布了新的文献求助10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
支雨泽完成签到,获得积分10
2分钟前
拼搏耷完成签到,获得积分10
3分钟前
3分钟前
平常星星完成签到 ,获得积分10
3分钟前
4分钟前
圆圆901234发布了新的文献求助30
4分钟前
ZanE完成签到,获得积分10
4分钟前
4分钟前
圆圆901234完成签到,获得积分10
4分钟前
共享精神应助聪明的背包采纳,获得10
4分钟前
5分钟前
5分钟前
cling发布了新的文献求助10
5分钟前
搜集达人应助丰富的唇彩采纳,获得10
5分钟前
赘婿应助风华正茂LC采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870802
求助须知:如何正确求助?哪些是违规求助? 6467774
关于积分的说明 15665043
捐赠科研通 4987027
什么是DOI,文献DOI怎么找? 2689141
邀请新用户注册赠送积分活动 1631477
关于科研通互助平台的介绍 1589522