The efficiency of household dehumidifiers is affected by air temperature and the temperature used for regeneration. A regeneration temperature that is too high can lead to increased energy use, heat build-up in the desiccant wheel, and lower dehumidification efficiency. In this study, we developed a LiCl@Al-Fum composite material and evaluated it through physical characterization and module testing. The results show that the LiCl@Al-Fum composite with a 20% mass fraction is particularly effective as a desiccant material. Additionally, a 15% volume concentration of neutral silica sol was identified as the optimal binder concentration. A comparative analysis of the effects of glass-fiber desiccant wheels (GF DWs), aluminum desiccant wheels (Al DWs), and commercial desiccant wheels (CM DWs) on household dehumidifier performance revealed that the Al DWs outperformed the CM DWs, showing a 13% improvement in the dehumidification rate and a 12.56% increase in the DCPP. An increase in the dehumidifier structure led to increases in the dehumidification rate by 11.8%, 11.9%, and 10% and in the DCPP by 11.6%, 12.1%, and 10%, respectively. Moreover, the modifications resulted in a 3.85 °C, 3.34 °C, and 3.8 °C decrease in the temperature.