Analysis of various techniques for ECG signal in healthcare, past, present, and future

QRS波群 医学 人工智能 计算机科学 可穿戴计算机 医疗急救 心脏病学 嵌入式系统
作者
Thivya Anbalagan,Malaya Kumar Nath,D. Vijayalakshmi,A Anbalagan
出处
期刊:Biomedical engineering advances [Elsevier]
卷期号:6: 100089-100089 被引量:135
标识
DOI:10.1016/j.bea.2023.100089
摘要

Cardiovascular diseases are the primary reason for mortality worldwide. As per WHO survey report in 2019, 17.9 million people died due to CVDs, accounting for 32% of all global deaths. Among these, heart attacks and strokes were responsible for 85%, whereas CVDs caused 38% of the premature deaths (under age of 70) affected by non-communicable diseases. The rate of death can be delayed and may be prevented by efficiently analyzing the ECG signals (i.e., captured by a non-invasive method) at the early stage of the disease. QRS complex in ECG provides pivotal information about the heart diseases. Many researchers have analyzed the ECG signal by traditional approach and machine learning methods for identifying the heart disorders. Performance of these techniques depend on accurate detection of different parameters (such as: P-, Q-, R-, S-, T-waveforms, QRS complex duration, R-peak, PR-interval, and RR-interval) from the ECG signals. This review paper provides a detail discussion and comparison of various ECG analysis techniques along with their pros and cons. It summarizes the ECG capturing method, databases available for disease detection & classification, and performance measures used by the researchers. Based on these, a future road map is suggested for real time ECG analysis (for identifying the heart related conditions) captured from the wearable devices and suggested the precautionary steps by the artificial system and experts. This method will help in identifying the co-relation of heart disorders with other body organs (such as: retina and brain parts) by analyzing ECG, fundus image, and magnetic resonance imaging (MRI) of human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怂发布了新的文献求助10
刚刚
bkagyin应助zoobijmy采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Wang_ZiMo发布了新的文献求助10
1秒前
魔幻小白菜完成签到,获得积分10
1秒前
1秒前
奋斗的向雪完成签到,获得积分10
2秒前
浮游应助明明白白采纳,获得10
2秒前
脑洞疼应助小情绪采纳,获得10
2秒前
周小凡完成签到,获得积分10
2秒前
赛赛完成签到 ,获得积分10
3秒前
LULU发布了新的文献求助10
3秒前
挖井的人发布了新的文献求助10
3秒前
无极微光应助科研小飞侠采纳,获得20
3秒前
3秒前
王志裕完成签到,获得积分10
3秒前
科研通AI6应助Yuanyuan采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
ljw发布了新的文献求助10
4秒前
彩色发布了新的文献求助10
4秒前
麻黄阿葵完成签到,获得积分10
4秒前
虚拟的函完成签到,获得积分10
4秒前
浮游应助利子采纳,获得10
5秒前
刘唯完成签到 ,获得积分10
5秒前
yuhanZ完成签到,获得积分10
5秒前
5秒前
seventonight2完成签到,获得积分10
6秒前
luoyang完成签到,获得积分10
6秒前
小蘑菇应助寻光人采纳,获得10
6秒前
朱文韬发布了新的文献求助10
7秒前
7秒前
能干雁凡发布了新的文献求助10
7秒前
DY完成签到,获得积分0
7秒前
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510716
求助须知:如何正确求助?哪些是违规求助? 4605425
关于积分的说明 14494517
捐赠科研通 4540584
什么是DOI,文献DOI怎么找? 2488066
邀请新用户注册赠送积分活动 1470280
关于科研通互助平台的介绍 1442714