已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analysis of various techniques for ECG signal in healthcare, past, present, and future

QRS波群 医学 人工智能 计算机科学 可穿戴计算机 医疗急救 心脏病学 嵌入式系统
作者
Thivya Anbalagan,Malaya Kumar Nath,D. Vijayalakshmi,A Anbalagan
出处
期刊:Biomedical engineering advances [Elsevier]
卷期号:6: 100089-100089 被引量:56
标识
DOI:10.1016/j.bea.2023.100089
摘要

Cardiovascular diseases are the primary reason for mortality worldwide. As per WHO survey report in 2019, 17.9 million people died due to CVDs, accounting for 32% of all global deaths. Among these, heart attacks and strokes were responsible for 85%, whereas CVDs caused 38% of the premature deaths (under age of 70) affected by non-communicable diseases. The rate of death can be delayed and may be prevented by efficiently analyzing the ECG signals (i.e., captured by a non-invasive method) at the early stage of the disease. QRS complex in ECG provides pivotal information about the heart diseases. Many researchers have analyzed the ECG signal by traditional approach and machine learning methods for identifying the heart disorders. Performance of these techniques depend on accurate detection of different parameters (such as: P-, Q-, R-, S-, T-waveforms, QRS complex duration, R-peak, PR-interval, and RR-interval) from the ECG signals. This review paper provides a detail discussion and comparison of various ECG analysis techniques along with their pros and cons. It summarizes the ECG capturing method, databases available for disease detection & classification, and performance measures used by the researchers. Based on these, a future road map is suggested for real time ECG analysis (for identifying the heart related conditions) captured from the wearable devices and suggested the precautionary steps by the artificial system and experts. This method will help in identifying the co-relation of heart disorders with other body organs (such as: retina and brain parts) by analyzing ECG, fundus image, and magnetic resonance imaging (MRI) of human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Koala完成签到,获得积分10
2秒前
2秒前
令宏发布了新的文献求助10
3秒前
向东东完成签到,获得积分10
9秒前
笑点低的硬币完成签到,获得积分10
10秒前
11秒前
13秒前
斜玉完成签到,获得积分10
14秒前
vivian发布了新的文献求助10
15秒前
Xieyusen发布了新的文献求助10
19秒前
tuanheqi发布了新的文献求助20
20秒前
冷静新烟发布了新的文献求助10
22秒前
iorpi完成签到,获得积分10
26秒前
宇宇完成签到 ,获得积分10
26秒前
太叔十三完成签到 ,获得积分10
29秒前
32秒前
刘天宇完成签到 ,获得积分10
32秒前
充电宝应助焦糖采纳,获得10
32秒前
zy完成签到 ,获得积分10
33秒前
Omni完成签到 ,获得积分0
34秒前
SPLjoker完成签到 ,获得积分10
34秒前
冷艳薯片完成签到,获得积分10
35秒前
gjm完成签到,获得积分10
36秒前
40秒前
小L完成签到 ,获得积分10
40秒前
英勇的红酒完成签到 ,获得积分10
43秒前
44秒前
julien完成签到,获得积分10
45秒前
46秒前
隐形曼青应助ttt采纳,获得10
47秒前
47秒前
大个应助科研进化中采纳,获得10
51秒前
千倾完成签到 ,获得积分10
51秒前
生动夏青完成签到,获得积分10
54秒前
ho hou h发布了新的文献求助10
55秒前
55秒前
在水一方应助旨酒欣欣采纳,获得10
55秒前
leeSongha完成签到 ,获得积分10
55秒前
56秒前
殷勤的紫槐完成签到,获得积分10
56秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510790
关于积分的说明 11155096
捐赠科研通 3245285
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171