已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analysis of various techniques for ECG signal in healthcare, past, present, and future

QRS波群 医学 人工智能 计算机科学 可穿戴计算机 医疗急救 心脏病学 嵌入式系统
作者
Thivya Anbalagan,Malaya Kumar Nath,D. Vijayalakshmi,A Anbalagan
出处
期刊:Biomedical engineering advances [Elsevier]
卷期号:6: 100089-100089 被引量:56
标识
DOI:10.1016/j.bea.2023.100089
摘要

Cardiovascular diseases are the primary reason for mortality worldwide. As per WHO survey report in 2019, 17.9 million people died due to CVDs, accounting for 32% of all global deaths. Among these, heart attacks and strokes were responsible for 85%, whereas CVDs caused 38% of the premature deaths (under age of 70) affected by non-communicable diseases. The rate of death can be delayed and may be prevented by efficiently analyzing the ECG signals (i.e., captured by a non-invasive method) at the early stage of the disease. QRS complex in ECG provides pivotal information about the heart diseases. Many researchers have analyzed the ECG signal by traditional approach and machine learning methods for identifying the heart disorders. Performance of these techniques depend on accurate detection of different parameters (such as: P-, Q-, R-, S-, T-waveforms, QRS complex duration, R-peak, PR-interval, and RR-interval) from the ECG signals. This review paper provides a detail discussion and comparison of various ECG analysis techniques along with their pros and cons. It summarizes the ECG capturing method, databases available for disease detection & classification, and performance measures used by the researchers. Based on these, a future road map is suggested for real time ECG analysis (for identifying the heart related conditions) captured from the wearable devices and suggested the precautionary steps by the artificial system and experts. This method will help in identifying the co-relation of heart disorders with other body organs (such as: retina and brain parts) by analyzing ECG, fundus image, and magnetic resonance imaging (MRI) of human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大帅比完成签到 ,获得积分10
2秒前
高点点完成签到 ,获得积分10
2秒前
gogo发布了新的文献求助10
3秒前
美女完成签到,获得积分10
4秒前
打打应助专注凌文采纳,获得10
5秒前
cocolu应助听神吟唱采纳,获得10
6秒前
xiexiangzhong发布了新的文献求助10
6秒前
良辰应助美女采纳,获得10
8秒前
Ava应助xuan采纳,获得10
10秒前
NexusExplorer应助xiexiangzhong采纳,获得10
13秒前
14秒前
Luke发布了新的文献求助200
15秒前
17秒前
gogo完成签到,获得积分10
18秒前
xuan发布了新的文献求助10
19秒前
Hello应助害怕的山兰采纳,获得10
22秒前
22秒前
24秒前
听闻墨笙完成签到 ,获得积分10
25秒前
小雨完成签到 ,获得积分10
25秒前
26秒前
Ava应助zhangfan采纳,获得10
27秒前
蔚欢完成签到 ,获得积分10
27秒前
专注凌文发布了新的文献求助10
29秒前
丘比特应助梁朝伟采纳,获得30
31秒前
曹文鹏完成签到 ,获得积分10
33秒前
赘婿应助科研通管家采纳,获得10
34秒前
赘婿应助科研通管家采纳,获得10
34秒前
隐形曼青应助科研通管家采纳,获得10
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
34秒前
香蕉觅云应助科研通管家采纳,获得10
34秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
35秒前
IKUN完成签到 ,获得积分10
36秒前
fdtrdtrd完成签到 ,获得积分10
37秒前
不见木棉完成签到,获得积分10
37秒前
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307193
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499766
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428732
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382