Analysis of various techniques for ECG signal in healthcare, past, present, and future

QRS波群 医学 人工智能 计算机科学 可穿戴计算机 医疗急救 心脏病学 嵌入式系统
作者
Thivya Anbalagan,Malaya Kumar Nath,D. Vijayalakshmi,A Anbalagan
出处
期刊:Biomedical engineering advances [Elsevier]
卷期号:6: 100089-100089 被引量:56
标识
DOI:10.1016/j.bea.2023.100089
摘要

Cardiovascular diseases are the primary reason for mortality worldwide. As per WHO survey report in 2019, 17.9 million people died due to CVDs, accounting for 32% of all global deaths. Among these, heart attacks and strokes were responsible for 85%, whereas CVDs caused 38% of the premature deaths (under age of 70) affected by non-communicable diseases. The rate of death can be delayed and may be prevented by efficiently analyzing the ECG signals (i.e., captured by a non-invasive method) at the early stage of the disease. QRS complex in ECG provides pivotal information about the heart diseases. Many researchers have analyzed the ECG signal by traditional approach and machine learning methods for identifying the heart disorders. Performance of these techniques depend on accurate detection of different parameters (such as: P-, Q-, R-, S-, T-waveforms, QRS complex duration, R-peak, PR-interval, and RR-interval) from the ECG signals. This review paper provides a detail discussion and comparison of various ECG analysis techniques along with their pros and cons. It summarizes the ECG capturing method, databases available for disease detection & classification, and performance measures used by the researchers. Based on these, a future road map is suggested for real time ECG analysis (for identifying the heart related conditions) captured from the wearable devices and suggested the precautionary steps by the artificial system and experts. This method will help in identifying the co-relation of heart disorders with other body organs (such as: retina and brain parts) by analyzing ECG, fundus image, and magnetic resonance imaging (MRI) of human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助城南采纳,获得30
1秒前
謓言完成签到,获得积分10
1秒前
科研通AI2S应助wxy21采纳,获得10
1秒前
3秒前
澄澈发布了新的文献求助10
3秒前
5秒前
朱伟豪发布了新的文献求助10
5秒前
wanci应助一叶知秋采纳,获得10
6秒前
6秒前
7秒前
浮笙完成签到 ,获得积分10
7秒前
舌T发布了新的文献求助10
8秒前
9秒前
gattsuo888发布了新的文献求助10
10秒前
俊逸的蜜蜂完成签到,获得积分10
11秒前
11秒前
今后应助gaomingzhe98采纳,获得30
11秒前
英姑应助白羽佳采纳,获得10
11秒前
12秒前
彭于彦祖应助纪间采纳,获得20
12秒前
聪明蛋发布了新的文献求助10
12秒前
12秒前
雪碧呀完成签到,获得积分10
12秒前
调皮的万怨完成签到,获得积分10
12秒前
熊二浪完成签到,获得积分10
13秒前
可爱代真完成签到,获得积分10
13秒前
13秒前
一叶知秋完成签到,获得积分20
13秒前
天真小甜瓜完成签到,获得积分10
13秒前
14秒前
14秒前
SYLH应助荆轲刺秦王采纳,获得10
14秒前
今后应助木质素爱好者采纳,获得10
14秒前
14秒前
15秒前
15秒前
风趣天问完成签到,获得积分20
16秒前
123发布了新的文献求助50
16秒前
112233完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953