Automated fetal heart rate analysis for baseline determination using EMAU-Net

基线(sea) 概化理论 胎心率 计算机科学 统计 数学 心率 医学 内科学 海洋学 血压 地质学
作者
Mujun Liu,Rongdan Zeng,Yahui Xiao,Yaosheng Lu,Yi Wu,Shun Long,Jia Liu,Zheng Zheng,Huijun Wang,Jieyun Bai
出处
期刊:Information Sciences [Elsevier]
卷期号:644: 119281-119281 被引量:3
标识
DOI:10.1016/j.ins.2023.119281
摘要

Automatic baseline determination is crucial for reducing the occurrence of fetal acidosis in clinical practice. However, there is a nonnegligible gap between the results of automatic baseline determination and the consensus of experts. In this paper, we propose a novel deep learning approach for baseline determination. First, potential accelerations/decelerations are recognized from the fetal heart rate and excluded by an ensemble multiattention U-Net. Then, the reference baseline and reliable interval are calculated via long- and short-term filters. Based on the filters, unreliable points for estimating the baseline are removed, and the final baseline is determined. We evaluate the performance of the proposed method on a public and a private database. Compared with state-of-the-art methods, our method yields better performance (the root mean square difference between baselines (BL. RMSD), F-measures for acceleration and deceleration (Acc/Dec. F-measures), the synthetic inconsistency coefficient (SI), and the morphological analysis discordance index (MADI) are 2.84 bpm, 0.80, 0.77, 48.9% and 3.94%, respectively) on the public database. The proposed method performs optimally in all metrics on the private database (BL. RMSD, Acc/Dec. F-measures, SI, and MADI are 1.75 bpm, 0.88, 0.80, 43.5%, and 3.11%, respectively). The experimental results indicate the effectiveness and generalizability of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin完成签到,获得积分10
刚刚
科研通AI5应助肉松小贝采纳,获得10
1秒前
粉色完成签到,获得积分10
1秒前
Ll发布了新的文献求助10
1秒前
1秒前
愉快彩虹发布了新的文献求助10
2秒前
CTL完成签到,获得积分10
2秒前
2秒前
共享精神应助加减乘除采纳,获得10
2秒前
2秒前
恬恬完成签到,获得积分10
2秒前
3秒前
22发布了新的文献求助10
3秒前
aacc956发布了新的文献求助10
3秒前
3秒前
谨慎涵柏完成签到,获得积分10
4秒前
快乐的如风完成签到,获得积分10
5秒前
6秒前
吃猫的鱼完成签到,获得积分10
6秒前
脑洞疼应助润润轩轩采纳,获得10
7秒前
刘文静完成签到,获得积分10
8秒前
Southluuu发布了新的文献求助10
8秒前
chenjyuu发布了新的文献求助10
8秒前
8秒前
粗暴的仙人掌完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
logic发布了新的文献求助10
9秒前
习习应助生动的雨竹采纳,获得10
9秒前
bo完成签到 ,获得积分10
9秒前
迟大猫应助啵乐乐采纳,获得10
10秒前
安雯完成签到 ,获得积分10
10秒前
HuLL完成签到,获得积分10
10秒前
Yolo完成签到 ,获得积分10
10秒前
难过的慕青完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759