Prediction of Multiple Types of RNA Modifications via Biological Language Model

计算机科学 计算生物学 人工智能 核糖核酸 生物 遗传学 基因
作者
Ying Zhang,Fang Ge,Fuyi Li,Xibei Yang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 3205-3214 被引量:6
标识
DOI:10.1109/tcbb.2023.3283985
摘要

It has been demonstrated that RNA modifications play essential roles in multiple biological processes. Accurate identification of RNA modifications in the transcriptome is critical for providing insights into the biological functions and mechanisms. Many tools have been developed for predicting RNA modifications at single-base resolution, which employ conventional feature engineering methods that focus on feature design and feature selection processes that require extensive biological expertise and may introduce redundant information. With the rapid development of artificial intelligence technologies, end-to-end methods are favorably received by researchers. Nevertheless, each well-trained model is only suitable for a specific RNA methylation modification type for nearly all of these approaches. In this study, we present MRM-BERT by feeding task-specific sequences into the powerful BERT (Bidirectional Encoder Representations from Transformers) model and implementing fine-tuning, which exhibits competitive performance to the state-of-the-art methods. MRM-BERT avoids repeated de novo training of the model and can predict multiple RNA modifications such as pseudouridine, m6A, m5C, and m1A in Mus musculus , Arabidopsis thaliana , and Saccharomyces cerevisiae . In addition, we analyse the attention heads to provide high attention regions for the prediction, and conduct saturated in silico mutagenesis of the input sequences to discover potential changes of RNA modifications, which can better assist researchers in their follow-up research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI2S应助白玉元宵采纳,获得10
1秒前
冷静灵竹发布了新的文献求助10
1秒前
白白kyt发布了新的文献求助30
1秒前
高文雅发布了新的文献求助10
1秒前
1秒前
自然浩阑发布了新的文献求助10
2秒前
慕青应助幼儿园大大班采纳,获得10
2秒前
mj完成签到,获得积分10
2秒前
眉梢完成签到 ,获得积分10
2秒前
2秒前
3秒前
陆啊陆发布了新的文献求助10
4秒前
天天快乐应助六子采纳,获得10
4秒前
要减肥的凝琴完成签到,获得积分10
4秒前
刻苦冰颜发布了新的文献求助10
5秒前
NexusExplorer应助土豆采纳,获得10
5秒前
HIKING发布了新的文献求助10
6秒前
6秒前
泡椒发布了新的文献求助10
6秒前
东北发布了新的文献求助10
7秒前
CipherSage应助乐观的鸽子采纳,获得10
7秒前
Jasper应助纪元龙采纳,获得10
8秒前
今后应助鲷哥采纳,获得10
8秒前
9秒前
花花完成签到,获得积分10
9秒前
topsun发布了新的文献求助10
9秒前
所所应助陆啊陆采纳,获得10
9秒前
lzy发布了新的文献求助80
9秒前
10秒前
迷路桃子完成签到,获得积分10
10秒前
10秒前
10秒前
绿眼虫完成签到,获得积分10
11秒前
Erin完成签到,获得积分10
11秒前
壮观翩跹完成签到,获得积分10
12秒前
Apollo完成签到,获得积分10
13秒前
英俊的铭应助汤姆采纳,获得10
14秒前
Yin发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663