Automatic detection of steel rebar corrosion based on machine learning and light spectrum of fiber optic corrosion sensors

钢筋 腐蚀 材料科学 光纤 腐蚀监测 光纤传感器 传输(电信) 纤维 复合材料 计算机科学 电信
作者
Shou Lin,Fujian Tang,Ji Dang,X.N. Li
出处
期刊:Optical Fiber Technology [Elsevier]
卷期号:79: 103379-103379 被引量:1
标识
DOI:10.1016/j.yofte.2023.103379
摘要

A method for automatic monitoring of steel rebar corrosion by integrating machine learning (ML) with single mode-multimode-single mode (SMS) fiber optic corrosion sensors is proposed in this study. SMS fiber optic corrosion sensors are fabricated in the laboratory and employed for corrosion monitoring of steel rebar in 3.5 wt% NaCl solution. The data of both the transmission spectrum of the SMS fiber optic corrosion sensor and the corrosion-induced mass loss of steel rebar are collected for training ML models. A total of twelve ML algorithms is trained and compared based on the whole and portion of the light spectrum database. Results show that only seven ML algorithms demonstrate good performance based on the whole original transmission spectrum data obtained from the SMS fiber optic corrosion sensors. However, they show poor performance based on portion of the database in corroded chronological order in comparison with those based on the whole database due to the nonlinear relationship between the corrosion-induced mass loss of steel rebar and the shift of the transmission spectrum of the SMS fiber optic corrosion sensors. The limitations of the ML algorithm based on laboratory data in this study are discussed and future work regarding real structure applications are also anticipated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研团子发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
2秒前
希望天下0贩的0应助华琪采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
十七完成签到 ,获得积分10
4秒前
大方岩发布了新的文献求助10
5秒前
5秒前
情怀应助柠檬采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
曼荷菠萝发布了新的文献求助10
7秒前
李健应助ZZ采纳,获得10
7秒前
yang发布了新的文献求助10
7秒前
白白白发布了新的文献求助10
7秒前
小李同学发布了新的文献求助30
8秒前
蓝蓝蓝发布了新的文献求助10
8秒前
8秒前
阿巴阿巴发布了新的文献求助10
8秒前
初空月儿发布了新的文献求助10
9秒前
9秒前
lvzhihao发布了新的文献求助10
9秒前
9秒前
赵清持完成签到,获得积分10
9秒前
李爱国应助阳光的涵菡采纳,获得10
11秒前
For完成签到,获得积分20
11秒前
体贴明辉发布了新的文献求助10
12秒前
12秒前
华仔应助兮兮兮兮兮兮采纳,获得10
13秒前
13秒前
13秒前
14秒前
明亮若枫完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794