清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning-Driven Dynamic Multimodal Optimization Algorithm for Real-Time Traceability of Water Pollution

可追溯性 计算机科学 管道(软件) 支持向量机 水质 比例(比率) 污染 质量(理念) 管道运输 节点(物理) 算法 数据挖掘 实时计算 机器学习 环境科学 工程类 环境工程 生态学 哲学 物理 软件工程 结构工程 认识论 量子力学 生物 程序设计语言
作者
Xuesong Yan,Xing Guo,Jin Chen,Chengyu Hu,Wenyin Gong,Liang Gao
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (6): 2472-2481
标识
DOI:10.1109/tai.2024.3355027
摘要

In recent years, water quality safety problems caused by sudden urban drinking water contamination events have attracted the attention of experts in China and abroad. After an occurrence of urban water pollution, it is challenging to locate the pollution source in real time according to the information collected by water quality sensors and then quickly deduce the injection location, injection concentration quality, and other characteristics of the pollution source. In this paper, we propose a learning-driven dynamic multimodal optimization algorithm framework that combines various machine learning algorithms. First, it uses the support vector machine (SVM) model to scale down and perform node probability estimation for a large-scale water supply pipeline network. Second, by predicting the uncertainty parameters of the pipe network when setting the pipe network simulation parameters, the framework can narrow the gap between simulation and real conditions, giving the pollution source characteristics obtained by the algorithm solution a higher confidence level. The experimental results show that the algorithm framework can achieve real-time traceability of water pollution for large-scale, uncertain pipe network environments and can obtain better accuracy and real-time performance than other dynamic algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
健忘的溪灵完成签到 ,获得积分10
23秒前
大医仁心完成签到 ,获得积分10
49秒前
科研通AI6应助岚月采纳,获得30
1分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
岚月发布了新的文献求助30
3分钟前
岚月完成签到,获得积分10
3分钟前
糊涂的青烟完成签到 ,获得积分10
4分钟前
激动的似狮完成签到,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
感动初蓝完成签到 ,获得积分10
6分钟前
tt完成签到,获得积分10
6分钟前
大鸟依人发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
orixero应助大鸟依人采纳,获得10
8分钟前
cao_bq完成签到,获得积分10
8分钟前
积雪完成签到 ,获得积分10
8分钟前
yang完成签到 ,获得积分10
8分钟前
cao_bq发布了新的文献求助10
9分钟前
9分钟前
一道光发布了新的文献求助30
9分钟前
JamesPei应助一道光采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
CipherSage应助科研通管家采纳,获得10
9分钟前
丘比特应助科研通管家采纳,获得10
9分钟前
领导范儿应助科研通管家采纳,获得10
9分钟前
灵巧的代芙完成签到 ,获得积分10
10分钟前
科研通AI6应助LinWu采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
12分钟前
13分钟前
gexzygg应助科研通管家采纳,获得10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561563
求助须知:如何正确求助?哪些是违规求助? 4646648
关于积分的说明 14678717
捐赠科研通 4587987
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490543
关于科研通互助平台的介绍 1461566