GNN-fused CapsNet with multi-head prediction for diabetic retinopathy grading

计算机科学 分级(工程) 糖尿病性视网膜病变 主管(地质) 人工智能 模式识别(心理学) 计算机视觉 医学 糖尿病 土木工程 地貌学 地质学 工程类 内分泌学
作者
Lei Ye,Shuyuan Lin,Zhiying Li,Yachao Zhang,Taotao Lai
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 107994-107994 被引量:1
标识
DOI:10.1016/j.engappai.2024.107994
摘要

Diabetic retinopathy (DR) is a prevalent complication of diabetes, affecting a substantial number of individuals worldwide and being a leading cause of blindness. The accurate and automated detection of DR is crucial for effectively managing symptoms such as vision loss and blindness. Recently, there has been significant interest in exploring the applicability of CapsNet for DR grading regarding its success in various vision tasks. However, the performance of traditional CapsNet in DR grading is constrained by the insufficient utilization of capsule features during the training phase. To enhance its performance, this paper proposes a hybrid neural network model called graph neural network (GNN)-fused CapsNet (GF-CapsNet) for DR grading. The model combines various components including ResNet-18 for feature extraction via transfer learning, a PrimaryCaps layer for encoding capsule features, and multi-head prediction that uses GNN-based feature fusion and transformation. Experimental results obtained from two public datasets (Kaggle APTOS 2019 and IDRiD) demonstrate that GF-CapsNet outperforms traditional CapsNet and several other state-of-the-art methods in terms of capturing DR lesions and grading DR. In addition, an investigation into the internal routing process demonstrates that our method mitigates the potential misassignment problem associated with traditional CapsNet. Moreover, the use of the class activation mapping technique for feature map visualization provides an explanation of our model’s superior performance in the DR grading task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
insist发布了新的文献求助10
1秒前
Junly发布了新的文献求助10
2秒前
张小星发布了新的文献求助10
3秒前
Weining发布了新的文献求助10
3秒前
4秒前
华仔应助阿巴阿巴采纳,获得20
5秒前
从容的微笑完成签到,获得积分20
6秒前
大劲完成签到,获得积分10
6秒前
高贵火车发布了新的文献求助10
6秒前
wzm完成签到,获得积分10
6秒前
6秒前
6秒前
上官若男应助baibai采纳,获得10
8秒前
LennonYin发布了新的文献求助10
9秒前
xia完成签到,获得积分20
9秒前
张小星完成签到,获得积分20
10秒前
Hello应助大劲采纳,获得10
10秒前
Ellen完成签到,获得积分10
10秒前
wwh发布了新的文献求助10
10秒前
10秒前
wangli发布了新的文献求助10
10秒前
黑妖完成签到,获得积分10
11秒前
小馒完成签到 ,获得积分10
12秒前
Sherlock发布了新的文献求助10
12秒前
钱俊发布了新的文献求助10
12秒前
所所应助xia采纳,获得10
13秒前
13秒前
13秒前
慕青应助啊凡采纳,获得10
13秒前
14秒前
cccchen完成签到,获得积分10
15秒前
科研通AI2S应助孤独的AD钙采纳,获得10
17秒前
12发布了新的文献求助10
17秒前
porcelain完成签到,获得积分10
18秒前
maoyu完成签到,获得积分10
18秒前
puyehwu完成签到,获得积分10
19秒前
19秒前
结实如音完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655