已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Achieving exceptional work-hardening capability of additively-manufactured multiphase Fe-Mn alloys via multiple deformation mechanisms

材料科学 层错能 微观结构 加工硬化 合金 马氏体 极限抗拉强度 冶金 奥氏体 硬化(计算) 无扩散变换 变形机理 铁氧体(磁铁) 复合材料 图层(电子)
作者
Peifeng Liu,Qinyuan Huang,Quan Shan,Zengbao Jiao,Qingge Wang,Yang Ma,Runhua Zhou,Ian Baker,Hong Wu
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:173: 103871-103871 被引量:1
标识
DOI:10.1016/j.ijplas.2023.103871
摘要

Laser-powder-bed-fusion (LPBF) fabricated Fe-Mn biodegradable alloys provide an attractive prospect for orthopedic applications due to their good tensile strength and high degradation rate. Nevertheless, the ε-martensite and heterogeneous microstructures produced by the LPBF processing often lead to premature failure of alloys. Herein, we report a LPBFed multiphase Fe-18Mn alloy (γ-austenite, ε-martensite, and α-ferrite) fabricated from pre-alloyed powders. After annealing at 650 °C, the alloy with a uniform microstructure displays a high 1 GPa tensile strength, a good fracture elongation of 16 %, and an extremely high work-hardening rate of 8500 MPa. The work-hardening rate is higher than that reported in most Fe-Mn steels and Fe-based high entropy alloys. The grain size of a few hundred nanometers provided the excess Gibbs free energy, resulting in an increase in the stacking fault energy (SFE) to 23.9 mJ/m2. The multiple deformation mechanisms, i.e., SFs, the martensitic transformation (γ → ε → α') and nano-deformation twins (DTs), were sequentially activated. We elucidate such unique work-hardening capability, originating from the interaction between the DTs, SFs and transformed martensite. Besides a high-density of dislocations were accumulated between parallel planar defects, the cooperative deformation of the soft and hard phases provided continuous hardening. Our findings highlight the exceptional work-hardening capability of additively-manufactured Fe-Mn alloys achieved by a multiphase material exhibiting multiple deformation mechanisms. The work also provides a straightforward approach for the development of stable-implanted Fe-based bone substitutes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡菠萝完成签到 ,获得积分10
刚刚
852应助苦逼采纳,获得10
2秒前
加菲丰丰举报求助违规成功
11秒前
喵喵盖被举报求助违规成功
12秒前
双黄举报求助违规成功
12秒前
12秒前
13秒前
16秒前
17秒前
苦逼发布了新的文献求助10
18秒前
充电宝应助科研通管家采纳,获得10
20秒前
21秒前
22秒前
加菲丰丰举报威威求助涉嫌违规
24秒前
研友_LkKrmL发布了新的文献求助10
26秒前
JamesPei应助雨宝采纳,获得30
27秒前
科研通AI2S应助维恰采纳,获得10
29秒前
fbbggb发布了新的文献求助10
30秒前
魔幻安南完成签到 ,获得积分10
33秒前
darkage完成签到,获得积分10
33秒前
Que给Que的求助进行了留言
34秒前
35秒前
darkage发布了新的文献求助10
37秒前
40秒前
陈塘关守将完成签到,获得积分10
44秒前
研友_LkKrmL完成签到,获得积分10
46秒前
astral完成签到,获得积分10
46秒前
research_cow发布了新的文献求助10
47秒前
加菲丰丰举报兮曦123求助涉嫌违规
50秒前
芽芽乐完成签到,获得积分10
50秒前
52秒前
开心的鬼神完成签到,获得积分10
53秒前
55秒前
Rjy完成签到 ,获得积分10
56秒前
58秒前
su完成签到 ,获得积分10
1分钟前
research_cow完成签到,获得积分20
1分钟前
ozy完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946599
关于积分的说明 8530909
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434459
科研通“疑难数据库(出版商)”最低求助积分说明 665312
邀请新用户注册赠送积分活动 650855