Learning With Imbalanced Noisy Data by Preventing Bias in Sample Selection

计算机科学 样品(材料) 选择偏差 人工智能 选择(遗传算法) 机器学习 取样偏差 模式识别(心理学) 数据挖掘 样本量测定 统计 数学 色谱法 化学
作者
Huafeng Liu,Mengmeng Sheng,Zeren Sun,Yazhou Yao,Xian‐Sheng Hua,Heng Tao Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7426-7437 被引量:4
标识
DOI:10.1109/tmm.2024.3368910
摘要

Learning with noisy labels has gained increasing attention because the inevitable imperfect labels in real-world scenarios can substantially hurt the deep model performance. Recent studies tend to regard low-loss samples as clean ones and discard high-loss ones to alleviate the negative impact of noisy labels. However, real-world datasets contain not only noisy labels but also class imbalance. The imbalance issue is prone to causing failure in the loss-based sample selection since the under-learning of tail classes also leans to produce high losses. To this end, we propose a simple yet effective method to address noisy labels in imbalanced datasets. Specifically, we propose C lass- B alance-based sample S election ( CBS ) to prevent the tail class samples from being neglected during training. We propose C onfidence-based S ample A ugmentation ( CSA ) for the chosen clean samples to enhance their reliability in the training process. To exploit selected noisy samples, we resort to prediction history to rectify labels of noisy samples. Moreover, we introduce the A verage C onfidence M argin (ACM) metric to measure the quality of corrected labels by leveraging the model's evolving training dynamics, thereby ensuring that low-quality corrected noisy samples are appropriately masked out. Lastly, consistency regularization is imposed on filtered label-corrected noisy samples to boost model performance. Comprehensive experimental results on synthetic and real-world datasets demonstrate the effectiveness and superiority of our proposed method, especially in imbalanced scenarios. The source code has been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/CBS .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黑猫乾杯应助李小鑫吖采纳,获得10
1秒前
1秒前
科研通AI6应助Huang采纳,获得10
2秒前
默默完成签到,获得积分10
2秒前
2秒前
布鲁鲁完成签到,获得积分10
3秒前
草东树完成签到,获得积分10
3秒前
精明人达完成签到,获得积分10
3秒前
Laurie发布了新的文献求助10
3秒前
赘婿应助九局下半采纳,获得10
3秒前
果果给果果的求助进行了留言
3秒前
科研通AI6应助无铭亚空采纳,获得10
3秒前
ccwu发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
3秒前
4秒前
乐乐应助1234采纳,获得10
4秒前
mmz完成签到 ,获得积分10
4秒前
徐老师发布了新的文献求助10
5秒前
美丽完成签到 ,获得积分10
5秒前
CodeCraft应助文艺的夏波采纳,获得10
6秒前
6秒前
6秒前
酷波er应助Deb采纳,获得10
6秒前
6秒前
wenbin完成签到,获得积分10
7秒前
7秒前
毅然决然必然完成签到,获得积分10
7秒前
共享精神应助struggling2026采纳,获得10
7秒前
贤惠的煎蛋完成签到,获得积分10
7秒前
freebird应助zp4采纳,获得10
7秒前
ljy应助奋斗平卉采纳,获得10
8秒前
领导范儿应助奋斗平卉采纳,获得10
8秒前
阿拉艾浩基完成签到,获得积分10
8秒前
channy发布了新的文献求助10
8秒前
完美世界应助喜乐采纳,获得10
9秒前
哈哈哈完成签到,获得积分10
9秒前
lql完成签到 ,获得积分10
9秒前
111完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271