Learning With Imbalanced Noisy Data by Preventing Bias in Sample Selection

计算机科学 样品(材料) 选择偏差 人工智能 选择(遗传算法) 机器学习 取样偏差 模式识别(心理学) 数据挖掘 样本量测定 统计 数学 化学 色谱法
作者
Huafeng Liu,Mengmeng Sheng,Zeren Sun,Yazhou Yao,Xian‐Sheng Hua,Heng Tao Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7426-7437 被引量:4
标识
DOI:10.1109/tmm.2024.3368910
摘要

Learning with noisy labels has gained increasing attention because the inevitable imperfect labels in real-world scenarios can substantially hurt the deep model performance. Recent studies tend to regard low-loss samples as clean ones and discard high-loss ones to alleviate the negative impact of noisy labels. However, real-world datasets contain not only noisy labels but also class imbalance. The imbalance issue is prone to causing failure in the loss-based sample selection since the under-learning of tail classes also leans to produce high losses. To this end, we propose a simple yet effective method to address noisy labels in imbalanced datasets. Specifically, we propose C lass- B alance-based sample S election ( CBS ) to prevent the tail class samples from being neglected during training. We propose C onfidence-based S ample A ugmentation ( CSA ) for the chosen clean samples to enhance their reliability in the training process. To exploit selected noisy samples, we resort to prediction history to rectify labels of noisy samples. Moreover, we introduce the A verage C onfidence M argin (ACM) metric to measure the quality of corrected labels by leveraging the model's evolving training dynamics, thereby ensuring that low-quality corrected noisy samples are appropriately masked out. Lastly, consistency regularization is imposed on filtered label-corrected noisy samples to boost model performance. Comprehensive experimental results on synthetic and real-world datasets demonstrate the effectiveness and superiority of our proposed method, especially in imbalanced scenarios. The source code has been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/CBS .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷念柏发布了新的文献求助10
2秒前
爆米花应助杨同学采纳,获得10
2秒前
彭仲康完成签到,获得积分10
3秒前
王ml发布了新的文献求助10
4秒前
4秒前
5秒前
李梦琦发布了新的文献求助10
6秒前
7秒前
8秒前
大个应助来一桶微笑采纳,获得10
9秒前
9秒前
MikuMiya发布了新的文献求助10
9秒前
9秒前
七兮完成签到,获得积分10
10秒前
10秒前
xianxian发布了新的文献求助10
11秒前
喜悦的半青完成签到,获得积分10
12秒前
ikun发布了新的文献求助10
12秒前
orixero应助彭于晏女友采纳,获得10
12秒前
情怀应助奋斗天德采纳,获得10
13秒前
14秒前
斯文败类应助zzz采纳,获得10
14秒前
14秒前
ParkMoonJ发布了新的文献求助30
15秒前
15秒前
一盘唐僧肉完成签到,获得积分20
15秒前
16秒前
河鲸发布了新的文献求助10
17秒前
杨同学发布了新的文献求助10
18秒前
爆米花应助眯眯眼的篮球采纳,获得10
19秒前
生动的机器猫完成签到,获得积分20
21秒前
haorui发布了新的文献求助10
21秒前
你香发布了新的文献求助10
22秒前
猪蹄强盗发布了新的文献求助10
22秒前
海4015发布了新的文献求助10
23秒前
岳晓青完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
skittles发布了新的文献求助10
24秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222350
求助须知:如何正确求助?哪些是违规求助? 2870973
关于积分的说明 8173471
捐赠科研通 2538005
什么是DOI,文献DOI怎么找? 1370116
科研通“疑难数据库(出版商)”最低求助积分说明 645702
邀请新用户注册赠送积分活动 619507