Learning With Imbalanced Noisy Data by Preventing Bias in Sample Selection

计算机科学 样品(材料) 选择偏差 人工智能 选择(遗传算法) 机器学习 取样偏差 模式识别(心理学) 数据挖掘 样本量测定 统计 数学 色谱法 化学
作者
Huafeng Liu,Mengmeng Sheng,Zeren Sun,Yazhou Yao,Xian‐Sheng Hua,Heng Tao Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7426-7437 被引量:4
标识
DOI:10.1109/tmm.2024.3368910
摘要

Learning with noisy labels has gained increasing attention because the inevitable imperfect labels in real-world scenarios can substantially hurt the deep model performance. Recent studies tend to regard low-loss samples as clean ones and discard high-loss ones to alleviate the negative impact of noisy labels. However, real-world datasets contain not only noisy labels but also class imbalance. The imbalance issue is prone to causing failure in the loss-based sample selection since the under-learning of tail classes also leans to produce high losses. To this end, we propose a simple yet effective method to address noisy labels in imbalanced datasets. Specifically, we propose C lass- B alance-based sample S election ( CBS ) to prevent the tail class samples from being neglected during training. We propose C onfidence-based S ample A ugmentation ( CSA ) for the chosen clean samples to enhance their reliability in the training process. To exploit selected noisy samples, we resort to prediction history to rectify labels of noisy samples. Moreover, we introduce the A verage C onfidence M argin (ACM) metric to measure the quality of corrected labels by leveraging the model's evolving training dynamics, thereby ensuring that low-quality corrected noisy samples are appropriately masked out. Lastly, consistency regularization is imposed on filtered label-corrected noisy samples to boost model performance. Comprehensive experimental results on synthetic and real-world datasets demonstrate the effectiveness and superiority of our proposed method, especially in imbalanced scenarios. The source code has been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/CBS .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哪吒之魔童闹海完成签到,获得积分10
刚刚
如意静白发布了新的文献求助10
2秒前
yyf发布了新的文献求助10
2秒前
2秒前
trial发布了新的文献求助10
3秒前
妙aaa发布了新的文献求助10
3秒前
华仔应助zhabgyucheng采纳,获得10
3秒前
LEEJ完成签到,获得积分10
3秒前
euy发布了新的文献求助10
3秒前
4秒前
august发布了新的文献求助10
4秒前
陈住气完成签到,获得积分20
4秒前
柳如花完成签到,获得积分10
4秒前
xiangdemeilo发布了新的文献求助10
5秒前
乐天林发布了新的文献求助10
6秒前
馒头完成签到 ,获得积分10
6秒前
Jasper应助梦雨星辰采纳,获得10
6秒前
勤劳的师完成签到,获得积分10
6秒前
Landau发布了新的文献求助10
7秒前
华仔应助王晓芳采纳,获得10
7秒前
8秒前
wql完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
共享精神应助大宝慧采纳,获得10
9秒前
独狼完成签到 ,获得积分10
10秒前
大个应助wxl采纳,获得10
10秒前
lxy发布了新的文献求助10
10秒前
高嘉完成签到,获得积分10
11秒前
xiangdemeilo完成签到,获得积分10
11秒前
Landau完成签到,获得积分10
11秒前
如意静白完成签到,获得积分10
11秒前
12秒前
sonicX完成签到,获得积分10
12秒前
Kyrie完成签到,获得积分10
14秒前
上官若男应助SibetHu采纳,获得10
14秒前
14秒前
yin完成签到,获得积分10
14秒前
动听不二关注了科研通微信公众号
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072617
求助须知:如何正确求助?哪些是违规求助? 4292947
关于积分的说明 13376665
捐赠科研通 4114155
什么是DOI,文献DOI怎么找? 2252906
邀请新用户注册赠送积分活动 1257594
关于科研通互助平台的介绍 1190476