Learning With Imbalanced Noisy Data by Preventing Bias in Sample Selection

计算机科学 样品(材料) 选择偏差 人工智能 选择(遗传算法) 机器学习 取样偏差 模式识别(心理学) 数据挖掘 样本量测定 统计 数学 化学 色谱法
作者
Huafeng Liu,Mengmeng Sheng,Zeren Sun,Yazhou Yao,Xian‐Sheng Hua,Heng Tao Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7426-7437 被引量:4
标识
DOI:10.1109/tmm.2024.3368910
摘要

Learning with noisy labels has gained increasing attention because the inevitable imperfect labels in real-world scenarios can substantially hurt the deep model performance. Recent studies tend to regard low-loss samples as clean ones and discard high-loss ones to alleviate the negative impact of noisy labels. However, real-world datasets contain not only noisy labels but also class imbalance. The imbalance issue is prone to causing failure in the loss-based sample selection since the under-learning of tail classes also leans to produce high losses. To this end, we propose a simple yet effective method to address noisy labels in imbalanced datasets. Specifically, we propose C lass- B alance-based sample S election ( CBS ) to prevent the tail class samples from being neglected during training. We propose C onfidence-based S ample A ugmentation ( CSA ) for the chosen clean samples to enhance their reliability in the training process. To exploit selected noisy samples, we resort to prediction history to rectify labels of noisy samples. Moreover, we introduce the A verage C onfidence M argin (ACM) metric to measure the quality of corrected labels by leveraging the model's evolving training dynamics, thereby ensuring that low-quality corrected noisy samples are appropriately masked out. Lastly, consistency regularization is imposed on filtered label-corrected noisy samples to boost model performance. Comprehensive experimental results on synthetic and real-world datasets demonstrate the effectiveness and superiority of our proposed method, especially in imbalanced scenarios. The source code has been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/CBS .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无奈的代珊完成签到 ,获得积分10
1秒前
2秒前
2秒前
搜集达人应助糊涂的小伙采纳,获得10
2秒前
mmd完成签到 ,获得积分10
3秒前
3秒前
Lily完成签到,获得积分10
4秒前
温言发布了新的文献求助10
5秒前
5秒前
Roy完成签到,获得积分10
5秒前
永远少年完成签到,获得积分10
7秒前
niu1发布了新的文献求助10
7秒前
8秒前
Danny完成签到,获得积分10
8秒前
Lsx完成签到 ,获得积分10
8秒前
又胖了发布了新的文献求助10
9秒前
9秒前
小小飞发布了新的文献求助20
10秒前
10秒前
10秒前
11秒前
wanci应助NorthWang采纳,获得10
11秒前
zhen完成签到,获得积分10
13秒前
ns发布了新的文献求助30
14秒前
15秒前
逐风完成签到,获得积分10
15秒前
无奈的酒窝完成签到,获得积分10
16秒前
16秒前
17秒前
blingbling发布了新的文献求助10
17秒前
今后应助SherlockLiu采纳,获得30
19秒前
daniel发布了新的文献求助10
19秒前
Jason应助温言采纳,获得20
20秒前
逐风发布了新的文献求助30
21秒前
hhzz发布了新的文献求助10
21秒前
日月轮回完成签到,获得积分10
22秒前
23秒前
Yimim发布了新的文献求助10
23秒前
小小li完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808