Integrated transcriptome and proteome analysis of near-isogenic line provides insights on regulatory function of Pup1 QTL in rice under phosphorus-starvation stress

转录组 蛋白质组 生物 数量性状位点 缺磷 细胞生物学 RNA序列 遗传学 基因 基因表达 营养物 生态学
作者
V Prathap,Aruna Tyagi,Suresh Kumar,Trilochan Mohapatra
出处
期刊:Environmental and Experimental Botany [Elsevier]
卷期号:221: 105726-105726
标识
DOI:10.1016/j.envexpbot.2024.105726
摘要

Phosphorus, essential for growth/productivity of plants, is acquired through roots in the form of inorganic phosphate (Pi). The molecular mechanism of low Pi tolerance in plants is still not fully understood. Functions of Pup1 QTL in Pi-deficiency tolerance in rice are sparsely understood. To decipher the molecular functions of qPup1 in Pi-homeostasis in rice, integrated transcriptome-proteome analysis of contrasting rice genotypes grown under Pi-starvation stress was performed. Our integrated analysis identified 4614 transcripts and 107 proteins differentially expressed in roots of NIL-23 (Pi-deficiency tolerant, harboring qPup1), whereas 8555 transcripts and 687 proteins were differentially expressed in shoots of NIL-23 under Pi-starvation stress. The integrated analysis indicated 146 transcripts/proteins expressed in shoots, while 18 transcripts/proteins expressed in roots of NIL-23, which might be responsible for making it stress resilient. The genes/proteins for TFs, P metabolism, starch/sucrose metabolism, and RNA-mediated post-transcriptional regulation play important roles in Pi-starvation in rice. Functional annotation of differentially transcribed genes/expressed proteins indicated transcription factors, phosphorus/starch/sucrose metabolism, and RNA-mediated post-transcriptional regulation to be important players in Pi-starvation resilience of NIL-23. Up-regulated expression of genes/proteins under stress due to introgression of qPup1 deciphered regulatory functions of the QTL and the genes/proteins involved. These might help developing rice cultivar with improved P acquisition/use-efficiency for better performance in P-deficient soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助小鱼采纳,获得20
刚刚
CNSSCI发布了新的文献求助10
1秒前
llls完成签到 ,获得积分10
5秒前
传奇3应助EWAXR采纳,获得10
6秒前
replay完成签到,获得积分10
6秒前
枫1538完成签到,获得积分10
6秒前
7秒前
Pepper完成签到 ,获得积分10
7秒前
小美女完成签到 ,获得积分10
8秒前
8秒前
Jason完成签到,获得积分10
8秒前
Riddance发布了新的文献求助10
9秒前
二分发布了新的文献求助10
9秒前
11秒前
姜无招发布了新的文献求助10
11秒前
安静寄风发布了新的文献求助10
12秒前
kuangweiming完成签到,获得积分10
15秒前
Orange应助yangbinsci0827采纳,获得10
16秒前
不知名的呆毛完成签到 ,获得积分10
17秒前
大轩发布了新的文献求助10
18秒前
归海诗珊发布了新的文献求助10
18秒前
CodeCraft应助派大星采纳,获得150
21秒前
22秒前
23秒前
轻松的小松鼠完成签到,获得积分10
26秒前
我真服了完成签到 ,获得积分10
27秒前
xi完成签到,获得积分10
27秒前
28秒前
duan发布了新的文献求助10
29秒前
30秒前
打工不可能完成签到,获得积分10
31秒前
xiaolan完成签到,获得积分10
34秒前
35秒前
35秒前
yangbinsci0827完成签到,获得积分10
36秒前
1234完成签到 ,获得积分20
36秒前
拉长的远山完成签到,获得积分10
39秒前
科研通AI5应助打工不可能采纳,获得10
39秒前
Ryan完成签到,获得积分10
39秒前
科研通AI5应助研友_ZG4ml8采纳,获得10
40秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Population Genetics 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3493245
求助须知:如何正确求助?哪些是违规求助? 3079135
关于积分的说明 9158297
捐赠科研通 2771905
什么是DOI,文献DOI怎么找? 1521233
邀请新用户注册赠送积分活动 705008
科研通“疑难数据库(出版商)”最低求助积分说明 702641