Hyperspectral Image Denoising via Spatial–Spectral Recurrent Transformer

高光谱成像 降噪 计算机科学 人工智能 遥感 图像去噪 计算机视觉 模式识别(心理学) 地质学
作者
Guanyiman Fu,Fengchao Xiong,Jianfeng Lu,Jun Zhou,Jiantao Zhou,Yuntao Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2024.3374953
摘要

Hyperspectral images (HSIs) often suffer from noise arising from both intra-imaging mechanisms and environmental factors. Leveraging domain knowledge specific to HSIs, such as global spectral correlation (GSC) and non-local spatial self-similarity (NSS), is crucial for effective denoising. Existing methods tend to independently utilize each of these knowledge components with multiple blocks, overlooking the inherent 3D nature of HSIs where domain knowledge is strongly interlinked, resulting in suboptimal performance. To address this challenge, this paper introduces a spatial-spectral recurrent transformer U-Net (SSRT-UNet) for HSI denoising. The proposed SSRT-UNet integrates NSS and GSC properties within a single SSRT block. This block consists of a spatial branch and a spectral branch. The spectral branch employs a combination of transformer and recurrent neural network to perform recurrent computations across bands, allowing for GSC exploitation beyond a fixed number of bands. Concurrently, the spatial branch encodes NSS for each band by sharing keys and values with the spectral branch under the guidance of GSC. The interaction between the two branches enables the joint utilization of NSS and GSC, avoiding their independent treatment. Experimental results demonstrate that our method outperforms several alternative approaches. The source code will be available at https://github.com/lronkitty/SSRT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztt发布了新的文献求助10
刚刚
超级无敌好吃完成签到,获得积分10
刚刚
wzc发布了新的文献求助10
刚刚
3129386658发布了新的文献求助10
刚刚
我吃柠檬发布了新的文献求助10
刚刚
Tancl1235完成签到,获得积分10
刚刚
粥粥发布了新的文献求助10
1秒前
2秒前
薛武发布了新的文献求助10
3秒前
岁岁菌完成签到,获得积分10
4秒前
松子发布了新的文献求助10
4秒前
5秒前
英俊的铭应助有梦想的人采纳,获得10
6秒前
6秒前
6秒前
8秒前
热情蓝完成签到,获得积分20
8秒前
Zayro完成签到,获得积分10
9秒前
科研通AI6应助羊羊羊采纳,获得10
9秒前
10秒前
Lucas应助cordon采纳,获得10
11秒前
11秒前
simdows完成签到,获得积分10
11秒前
12秒前
Ava应助TTOM采纳,获得10
12秒前
yiyi完成签到,获得积分10
13秒前
CipherSage应助我吃柠檬采纳,获得10
13秒前
14秒前
14秒前
共享精神应助苒苒采纳,获得30
15秒前
YaoHui发布了新的文献求助10
15秒前
17秒前
17秒前
yyy发布了新的文献求助10
17秒前
17秒前
18秒前
悠悠发布了新的文献求助10
18秒前
华仔应助hahaer采纳,获得10
20秒前
追寻的雅柔完成签到,获得积分10
20秒前
希望天下0贩的0应助Snoopy采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396