Hyperspectral Image Denoising via Spatial–Spectral Recurrent Transformer

高光谱成像 降噪 计算机科学 人工智能 遥感 图像去噪 计算机视觉 模式识别(心理学) 地质学
作者
Guanyiman Fu,Fengchao Xiong,Jianfeng Lu,Jun Zhou,Jiantao Zhou,Yuntao Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2024.3374953
摘要

Hyperspectral images (HSIs) often suffer from noise arising from both intra-imaging mechanisms and environmental factors. Leveraging domain knowledge specific to HSIs, such as global spectral correlation (GSC) and non-local spatial self-similarity (NSS), is crucial for effective denoising. Existing methods tend to independently utilize each of these knowledge components with multiple blocks, overlooking the inherent 3D nature of HSIs where domain knowledge is strongly interlinked, resulting in suboptimal performance. To address this challenge, this paper introduces a spatial-spectral recurrent transformer U-Net (SSRT-UNet) for HSI denoising. The proposed SSRT-UNet integrates NSS and GSC properties within a single SSRT block. This block consists of a spatial branch and a spectral branch. The spectral branch employs a combination of transformer and recurrent neural network to perform recurrent computations across bands, allowing for GSC exploitation beyond a fixed number of bands. Concurrently, the spatial branch encodes NSS for each band by sharing keys and values with the spectral branch under the guidance of GSC. The interaction between the two branches enables the joint utilization of NSS and GSC, avoiding their independent treatment. Experimental results demonstrate that our method outperforms several alternative approaches. The source code will be available at https://github.com/lronkitty/SSRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
tataliza1完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
星辰大海应助KON采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助30
2秒前
项人发布了新的文献求助10
3秒前
3秒前
Anna发布了新的文献求助10
4秒前
深情安青应助清图采纳,获得10
4秒前
LSY完成签到,获得积分10
4秒前
娃haha发布了新的文献求助10
4秒前
5秒前
5秒前
顺心的鲂发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
muderder发布了新的文献求助10
6秒前
FartKing发布了新的文献求助10
6秒前
螺蛳粉完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
蝴蝶完成签到,获得积分10
8秒前
8秒前
今后应助随便吧采纳,获得10
8秒前
尧尧发布了新的文献求助10
9秒前
9秒前
9秒前
zht完成签到,获得积分10
9秒前
quanwangertaiyu完成签到 ,获得积分10
10秒前
灵巧若剑发布了新的文献求助10
10秒前
lll发布了新的文献求助10
10秒前
开心的怜菡完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727567
求助须知:如何正确求助?哪些是违规求助? 5309169
关于积分的说明 15311368
捐赠科研通 4875043
什么是DOI,文献DOI怎么找? 2618493
邀请新用户注册赠送积分活动 1568219
关于科研通互助平台的介绍 1524904