Hyperspectral Image Denoising via Spatial–Spectral Recurrent Transformer

高光谱成像 降噪 计算机科学 人工智能 遥感 图像去噪 计算机视觉 模式识别(心理学) 地质学
作者
Guanyiman Fu,Fengchao Xiong,Jianfeng Lu,Jun Zhou,Jiantao Zhou,Yuntao Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2024.3374953
摘要

Hyperspectral images (HSIs) often suffer from noise arising from both intra-imaging mechanisms and environmental factors. Leveraging domain knowledge specific to HSIs, such as global spectral correlation (GSC) and non-local spatial self-similarity (NSS), is crucial for effective denoising. Existing methods tend to independently utilize each of these knowledge components with multiple blocks, overlooking the inherent 3D nature of HSIs where domain knowledge is strongly interlinked, resulting in suboptimal performance. To address this challenge, this paper introduces a spatial-spectral recurrent transformer U-Net (SSRT-UNet) for HSI denoising. The proposed SSRT-UNet integrates NSS and GSC properties within a single SSRT block. This block consists of a spatial branch and a spectral branch. The spectral branch employs a combination of transformer and recurrent neural network to perform recurrent computations across bands, allowing for GSC exploitation beyond a fixed number of bands. Concurrently, the spatial branch encodes NSS for each band by sharing keys and values with the spectral branch under the guidance of GSC. The interaction between the two branches enables the joint utilization of NSS and GSC, avoiding their independent treatment. Experimental results demonstrate that our method outperforms several alternative approaches. The source code will be available at https://github.com/lronkitty/SSRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liu星雨发布了新的文献求助10
刚刚
1秒前
saberynn完成签到,获得积分10
1秒前
聪明映菡发布了新的文献求助20
1秒前
科研通AI5应助雨碎寒江采纳,获得10
1秒前
Yancent应助猪8986采纳,获得10
1秒前
Chochee完成签到,获得积分10
1秒前
香蕉觅云应助朴实初夏采纳,获得10
1秒前
发癫仙人掌完成签到 ,获得积分10
2秒前
恭喜发布了新的文献求助10
2秒前
3秒前
3秒前
spiritpope发布了新的文献求助10
3秒前
4秒前
9527King完成签到,获得积分10
4秒前
小曲完成签到,获得积分10
5秒前
元恪颜完成签到,获得积分10
5秒前
6秒前
yun完成签到,获得积分20
6秒前
杨YY发布了新的文献求助10
6秒前
7秒前
华仔应助qwer采纳,获得10
7秒前
ding应助安静凡旋采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
开放的桐完成签到,获得积分20
10秒前
微热山丘发布了新的文献求助10
11秒前
轨迹完成签到,获得积分20
11秒前
包子完成签到,获得积分10
12秒前
13秒前
脑洞疼应助鱼小鱼采纳,获得30
13秒前
Phoenix完成签到,获得积分10
13秒前
13秒前
5277完成签到 ,获得积分10
13秒前
13秒前
SciGPT应助富裕山人采纳,获得10
14秒前
朴实初夏发布了新的文献求助10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487195
求助须知:如何正确求助?哪些是违规求助? 3075107
关于积分的说明 9139979
捐赠科研通 2767369
什么是DOI,文献DOI怎么找? 1518653
邀请新用户注册赠送积分活动 703197
科研通“疑难数据库(出版商)”最低求助积分说明 701677