Hyperspectral Image Denoising via Spatial–Spectral Recurrent Transformer

高光谱成像 降噪 计算机科学 人工智能 遥感 图像去噪 计算机视觉 模式识别(心理学) 地质学
作者
Guanyiman Fu,Fengchao Xiong,Jianfeng Lu,Jun Zhou,Jiantao Zhou,Yuntao Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2024.3374953
摘要

Hyperspectral images (HSIs) often suffer from noise arising from both intra-imaging mechanisms and environmental factors. Leveraging domain knowledge specific to HSIs, such as global spectral correlation (GSC) and non-local spatial self-similarity (NSS), is crucial for effective denoising. Existing methods tend to independently utilize each of these knowledge components with multiple blocks, overlooking the inherent 3D nature of HSIs where domain knowledge is strongly interlinked, resulting in suboptimal performance. To address this challenge, this paper introduces a spatial-spectral recurrent transformer U-Net (SSRT-UNet) for HSI denoising. The proposed SSRT-UNet integrates NSS and GSC properties within a single SSRT block. This block consists of a spatial branch and a spectral branch. The spectral branch employs a combination of transformer and recurrent neural network to perform recurrent computations across bands, allowing for GSC exploitation beyond a fixed number of bands. Concurrently, the spatial branch encodes NSS for each band by sharing keys and values with the spectral branch under the guidance of GSC. The interaction between the two branches enables the joint utilization of NSS and GSC, avoiding their independent treatment. Experimental results demonstrate that our method outperforms several alternative approaches. The source code will be available at https://github.com/lronkitty/SSRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱雅彤发布了新的文献求助10
刚刚
小张吃不胖完成签到 ,获得积分10
1秒前
不安的翠容完成签到,获得积分10
3秒前
阔达凝天完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
风趣遥完成签到,获得积分10
4秒前
77发布了新的文献求助10
4秒前
华仔应助柔弱雅彤采纳,获得10
5秒前
烟花应助柔弱雅彤采纳,获得10
5秒前
DMTloveforever完成签到,获得积分10
5秒前
陶醉的冷梅完成签到,获得积分10
7秒前
22222发布了新的文献求助20
7秒前
btyjs完成签到,获得积分10
7秒前
哈哈发布了新的文献求助10
8秒前
科研通AI6应助草学研究采纳,获得10
9秒前
Ran发布了新的文献求助10
10秒前
鲁万仇发布了新的文献求助10
10秒前
WYW发布了新的文献求助10
12秒前
13秒前
JamesPei应助苗条的一兰采纳,获得20
14秒前
研友_VZG7GZ应助林鑫璐采纳,获得10
15秒前
Tokgo完成签到,获得积分10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
Jasper应助singlelx89采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
Orange应助科研通管家采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得30
17秒前
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640