Hyperspectral Image Denoising via Spatial–Spectral Recurrent Transformer

高光谱成像 降噪 计算机科学 人工智能 遥感 图像去噪 计算机视觉 模式识别(心理学) 地质学
作者
Guanyiman Fu,Fengchao Xiong,Jianfeng Lu,Jun Zhou,Jiantao Zhou,Yuntao Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2024.3374953
摘要

Hyperspectral images (HSIs) often suffer from noise arising from both intra-imaging mechanisms and environmental factors. Leveraging domain knowledge specific to HSIs, such as global spectral correlation (GSC) and non-local spatial self-similarity (NSS), is crucial for effective denoising. Existing methods tend to independently utilize each of these knowledge components with multiple blocks, overlooking the inherent 3D nature of HSIs where domain knowledge is strongly interlinked, resulting in suboptimal performance. To address this challenge, this paper introduces a spatial-spectral recurrent transformer U-Net (SSRT-UNet) for HSI denoising. The proposed SSRT-UNet integrates NSS and GSC properties within a single SSRT block. This block consists of a spatial branch and a spectral branch. The spectral branch employs a combination of transformer and recurrent neural network to perform recurrent computations across bands, allowing for GSC exploitation beyond a fixed number of bands. Concurrently, the spatial branch encodes NSS for each band by sharing keys and values with the spectral branch under the guidance of GSC. The interaction between the two branches enables the joint utilization of NSS and GSC, avoiding their independent treatment. Experimental results demonstrate that our method outperforms several alternative approaches. The source code will be available at https://github.com/lronkitty/SSRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俏皮小兔子完成签到,获得积分10
刚刚
李狗蛋完成签到 ,获得积分10
刚刚
YJ888完成签到,获得积分10
1秒前
昏睡的蟠桃应助过丫丫采纳,获得30
1秒前
1秒前
科研通AI5应助wyc采纳,获得10
1秒前
1秒前
ppt发布了新的文献求助10
2秒前
爱学习的小凌完成签到,获得积分10
2秒前
3秒前
3秒前
以父之名完成签到,获得积分10
3秒前
科研通AI2S应助笑面客采纳,获得10
3秒前
明月照我程完成签到,获得积分10
3秒前
么么叽发布了新的文献求助10
4秒前
昏睡的蟠桃应助柚柚袖子采纳,获得30
4秒前
5秒前
5秒前
5秒前
哈哈大笑完成签到,获得积分10
5秒前
bkagyin应助yanzu采纳,获得10
5秒前
bonnie发布了新的文献求助10
5秒前
5秒前
小碗面完成签到,获得积分20
6秒前
6秒前
6秒前
蒙蒙发布了新的文献求助10
6秒前
6秒前
Ya发布了新的文献求助10
7秒前
7秒前
Chirstina发布了新的文献求助10
7秒前
8秒前
Nydia发布了新的文献求助10
8秒前
七里香发布了新的文献求助10
8秒前
小碗面发布了新的文献求助10
9秒前
乐乐应助li12345852456采纳,获得10
9秒前
myt应助yzm采纳,获得10
9秒前
10秒前
10秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725921
求助须知:如何正确求助?哪些是违规求助? 3271014
关于积分的说明 9969976
捐赠科研通 2986468
什么是DOI,文献DOI怎么找? 1638241
邀请新用户注册赠送积分活动 778036
科研通“疑难数据库(出版商)”最低求助积分说明 747383