Significant improvement of both hydrogen permeation and catalytic activity of nickel hollow fiber membrane reactor by surface electrochemical modification

渗透 催化作用 电化学 电解质 表面改性 化学工程 图层(电子) 蚀刻(微加工) 材料科学 多孔性 化学 电极 复合材料 有机化学 冶金 物理化学 工程类 生物化学
作者
Zhifei Hu,Zejiao Wang,Mingming Wang,Zhigang Wang,Xiaoyao Tan,Shaomin Liu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:485: 149746-149746 被引量:5
标识
DOI:10.1016/j.cej.2024.149746
摘要

We developed a novel approach to modify the nickel hollow fiber membrane (NHFM) for enhanced H2 permeation and catalytic activity. In this work, the outer dense layer of the manufactured NHFM was precisely removed by surface electrochemical modification. A porous structure was formed on the membrane surface after the removal of the outer dense layer, but the inner dense layer still maintained intact. Compared to the raw membrane, not only H2 permeation of the modified membrane increased by approximately 2 times in the separation test, but also the catalytic activity of the modified membrane increased by 5 ∼ 7 times in the methane steam reforming (MSR) reaction test. Acid etching, electrochemical etching with various electrolyte solutions was comparably investigated for the removal of the outer dense layer. Acid etching showed low effectiveness and uneven surface modification as the etching process starts from the grain boundary. Electrochemical etching showed higher efficiency to achieve a uniform modification in a shorter etching time. Among the three investigated electrolytes, namely H2SO4, HCl and HNO3, H2SO4 had the best performance due to its complete remove of the outer dense layer and the formation of a uniform open porous structure on the membrane surface. The removal of the outer dense layer reduces mass transfer resistance for hydrogen permeation and allowed the formation of open porous structure to increase the specific surface area for more reaction catalytic sites. It is a highly efficient technique to improve both hydrogen permeation and catalytic activity for NHFM reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
kyokukou完成签到,获得积分10
1秒前
所所应助可以的采纳,获得10
1秒前
黎li完成签到 ,获得积分20
2秒前
热情的水杯完成签到,获得积分10
2秒前
江南达尔贝完成签到 ,获得积分10
3秒前
寂寞的灵发布了新的文献求助10
3秒前
4秒前
执玉笛发布了新的文献求助10
4秒前
sweet完成签到,获得积分10
4秒前
SoniaChan完成签到,获得积分10
5秒前
yidashi完成签到,获得积分10
5秒前
虚拟的秋寒完成签到,获得积分10
5秒前
乐乐完成签到,获得积分10
5秒前
Aba关注了科研通微信公众号
8秒前
寂寞的灵完成签到,获得积分10
9秒前
科研通AI5应助峰宝宝采纳,获得10
9秒前
学术通zzz完成签到,获得积分0
9秒前
Avalon完成签到,获得积分10
9秒前
10秒前
susu完成签到,获得积分10
12秒前
13秒前
科研通AI5应助FST采纳,获得10
14秒前
执玉笛完成签到,获得积分10
14秒前
陈龙完成签到,获得积分10
16秒前
wuxunxun2015发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
qyz完成签到,获得积分10
19秒前
张侨麟发布了新的文献求助10
19秒前
HilbertVon完成签到 ,获得积分10
20秒前
少十七完成签到,获得积分10
22秒前
土豆儿完成签到 ,获得积分10
22秒前
刘一三完成签到 ,获得积分10
22秒前
22秒前
瘦瘦的迎南完成签到 ,获得积分10
23秒前
可以的发布了新的文献求助10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356