Transfer Learning-Based B-Line Assessment of Lung Ultrasound for Acute Heart Failure

肺超声 学习迁移 计算机科学 超声波 人工智能 直线(几何图形) 心力衰竭 心脏病学 内科学 重症监护医学 医学 放射科 数学 几何学
作者
Joseph R. Pare,Lars Gjesteby,Melinda Tonelli,Megan Leo,Krithika M. Muruganandan,Gaurav Choudhary,Laura J. Brattain
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:50 (6): 825-832 被引量:3
标识
DOI:10.1016/j.ultrasmedbio.2024.02.004
摘要

B-lines assessed by lung ultrasound (LUS) outperform physical exam, chest radiograph, and biomarkers for the associated diagnosis of acute heart failure (AHF) in the emergent setting. The use of LUS is however limited to trained professionals and suffers from interpretation variability. The objective was to utilize transfer learning to create an AI-enabled software that can aid novice users to automate LUS B-line interpretation.Data from an observational AHF LUS study provided standardized cine clips for AI model development and evaluation. A total of 49,952 LUS frames from 30 patients were hand scored and trained on a convolutional neural network (CNN) to interpret B-lines at the frame level. A random independent evaluation set of 476 LUS clips from 60 unique patients assessed model performance. The AI models scored the clips on both a binary and ordinal 0-4 multiclass assessment.A multiclassification AI algorithm had the best performance at the binary level when applied to the independent evaluation set, AUC of 0.967 (95% CI 0.965-0.970) for detecting pathologic conditions. When compared to expert blinded reviewer, the 0-4 multiclassification AI algorithm scale had a reported linear weighted kappa of 0.839 (95% CI 0.804-0.871).The multiclassification AI algorithm is a robust and well performing model at both binary and ordinal multiclass B-line evaluation. This algorithm has the potential to be integrated into clinical workflows to assist users with quantitative and objective B-line assessment for evaluation of AHF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤圆发布了新的文献求助10
刚刚
耕牛热发布了新的文献求助10
1秒前
20231125发布了新的文献求助10
1秒前
2秒前
撒旦撒发布了新的文献求助30
3秒前
Owen应助机智的冰夏采纳,获得30
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
充电宝应助段yt采纳,获得10
4秒前
wy.he发布了新的文献求助10
4秒前
bojuelaoyu发布了新的文献求助10
5秒前
5秒前
刻苦的丹妗完成签到,获得积分10
5秒前
小谭完成签到 ,获得积分10
5秒前
5秒前
boli完成签到,获得积分10
5秒前
sylnd126发布了新的文献求助30
6秒前
甲乙发布了新的文献求助10
6秒前
一只傻墨墨完成签到,获得积分10
6秒前
7秒前
ttimmy完成签到,获得积分10
7秒前
jy完成签到,获得积分10
7秒前
严冰蝶完成签到 ,获得积分10
7秒前
8秒前
nn发布了新的文献求助10
9秒前
yznfly应助慕容采文采纳,获得20
9秒前
我是老大应助影影采纳,获得10
9秒前
科研通AI6应助Hh采纳,获得10
9秒前
自由思枫完成签到,获得积分10
9秒前
sybil发布了新的文献求助10
10秒前
22完成签到 ,获得积分10
10秒前
Wefaily发布了新的文献求助10
11秒前
snotman完成签到,获得积分10
11秒前
12秒前
ASDGFJFK完成签到,获得积分10
14秒前
goldy完成签到,获得积分10
14秒前
万能图书馆应助biglixiang采纳,获得10
14秒前
14秒前
sybil完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580415
求助须知:如何正确求助?哪些是违规求助? 4665209
关于积分的说明 14755310
捐赠科研通 4606804
什么是DOI,文献DOI怎么找? 2527958
邀请新用户注册赠送积分活动 1497277
关于科研通互助平台的介绍 1466331