Transfer Learning-Based B-Line Assessment of Lung Ultrasound for Acute Heart Failure

肺超声 学习迁移 计算机科学 超声波 人工智能 直线(几何图形) 心力衰竭 心脏病学 内科学 重症监护医学 医学 放射科 数学 几何学
作者
Joseph R. Pare,Lars Gjesteby,Melinda Tonelli,Megan Leo,Krithika M. Muruganandan,Gaurav Choudhary,Laura J. Brattain
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:50 (6): 825-832 被引量:3
标识
DOI:10.1016/j.ultrasmedbio.2024.02.004
摘要

B-lines assessed by lung ultrasound (LUS) outperform physical exam, chest radiograph, and biomarkers for the associated diagnosis of acute heart failure (AHF) in the emergent setting. The use of LUS is however limited to trained professionals and suffers from interpretation variability. The objective was to utilize transfer learning to create an AI-enabled software that can aid novice users to automate LUS B-line interpretation.Data from an observational AHF LUS study provided standardized cine clips for AI model development and evaluation. A total of 49,952 LUS frames from 30 patients were hand scored and trained on a convolutional neural network (CNN) to interpret B-lines at the frame level. A random independent evaluation set of 476 LUS clips from 60 unique patients assessed model performance. The AI models scored the clips on both a binary and ordinal 0-4 multiclass assessment.A multiclassification AI algorithm had the best performance at the binary level when applied to the independent evaluation set, AUC of 0.967 (95% CI 0.965-0.970) for detecting pathologic conditions. When compared to expert blinded reviewer, the 0-4 multiclassification AI algorithm scale had a reported linear weighted kappa of 0.839 (95% CI 0.804-0.871).The multiclassification AI algorithm is a robust and well performing model at both binary and ordinal multiclass B-line evaluation. This algorithm has the potential to be integrated into clinical workflows to assist users with quantitative and objective B-line assessment for evaluation of AHF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助孙朱珠采纳,获得10
1秒前
称心的语梦完成签到,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
拉长的鱼发布了新的文献求助10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
拓木幸子发布了新的文献求助30
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
NICAI应助科研通管家采纳,获得10
2秒前
lyyyy完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
细心的老头完成签到,获得积分10
3秒前
wanci应助WANGYI采纳,获得10
4秒前
搜集达人应助五月拾旧采纳,获得10
4秒前
吴晨曦发布了新的文献求助10
4秒前
HuE完成签到,获得积分10
5秒前
6秒前
orixero应助YY采纳,获得10
6秒前
lisi应助小马采纳,获得10
7秒前
光亮的元容完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552090
求助须知:如何正确求助?哪些是违规求助? 4636914
关于积分的说明 14646590
捐赠科研通 4578819
什么是DOI,文献DOI怎么找? 2511119
邀请新用户注册赠送积分活动 1486301
关于科研通互助平台的介绍 1457502