Machine Learning and Single-Cell Analysis Identify Molecular Features of IPF-Associated Fibroblast Subtypes and Their Implications on IPF Prognosis

特发性肺纤维化 成纤维细胞 疾病 纤维化 生物 医学 病理 癌症研究 细胞培养 内科学 遗传学
作者
Jiwei Hou,Yanru Yang,Xin Han
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:25 (1): 94-94
标识
DOI:10.3390/ijms25010094
摘要

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown cause, and the involvement of fibroblasts in its pathogenesis is well recognized. However, a comprehensive understanding of fibroblasts’ heterogeneity, their molecular characteristics, and their clinical relevance in IPF is lacking. In this study, we aimed to systematically classify fibroblast populations, uncover the molecular and biological features of fibroblast subtypes in fibrotic lung tissue, and establish an IPF-associated, fibroblast-related predictive model for IPF. Herein, a meticulous analysis of scRNA-seq data obtained from lung tissues of both normal and IPF patients was conducted to identify fibroblast subpopulations in fibrotic lung tissues. In addition, hdWGCNA was utilized to identify co-expressed gene modules associated with IPF-related fibroblasts. Furthermore, we explored the prognostic utility of signature genes for these IPF-related fibroblast subtypes using a machine learning-based approach. Two predominant fibroblast subpopulations, termed IPF-related fibroblasts, were identified in fibrotic lung tissues. Additionally, we identified co-expressed gene modules that are closely associated with IPF-fibroblasts by utilizing hdWGCNA. We identified gene signatures that hold promise as prognostic markers in IPF. Moreover, we constructed a predictive model specifically focused on IPF-fibroblasts which can be utilized to assess disease prognosis in IPF patients. These findings have the potential to improve disease prediction and facilitate targeted interventions for patients with IPF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴昕奕完成签到 ,获得积分10
1秒前
小小发布了新的文献求助10
1秒前
c程序语言发布了新的文献求助10
2秒前
Jane_2022完成签到,获得积分10
2秒前
txyouniverse完成签到 ,获得积分10
3秒前
YuLu完成签到 ,获得积分10
3秒前
猪猪hero完成签到,获得积分10
3秒前
4秒前
斯文败类应助博修采纳,获得10
5秒前
小袁完成签到 ,获得积分10
5秒前
开心完成签到,获得积分10
6秒前
6秒前
123完成签到 ,获得积分10
6秒前
nano完成签到,获得积分10
6秒前
8秒前
lq102021发布了新的文献求助10
8秒前
感谢有你完成签到 ,获得积分10
8秒前
景穆完成签到,获得积分10
10秒前
动听的巧荷完成签到,获得积分20
10秒前
mm发布了新的文献求助30
11秒前
11秒前
12秒前
HWei完成签到,获得积分10
15秒前
子车茗应助元思远采纳,获得30
16秒前
谨慎达完成签到 ,获得积分10
16秒前
小贾发布了新的文献求助10
16秒前
123发布了新的文献求助10
16秒前
重要的夕阳完成签到,获得积分10
17秒前
18秒前
21秒前
CipherSage应助kkk采纳,获得10
21秒前
yar应助junio采纳,获得10
22秒前
左丘傲菡发布了新的文献求助10
23秒前
lq102021完成签到,获得积分10
23秒前
李健应助重要的夕阳采纳,获得10
23秒前
24秒前
orixero应助mm采纳,获得10
25秒前
27秒前
orixero应助lan采纳,获得10
27秒前
陈陈发布了新的文献求助10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574