A deep learning model based on magnifying endoscopy with narrow-band imaging to evaluate intestinal metaplasia grading and OLGIM staging: A multicenter study

分级(工程) 医学 内窥镜检查 放射科 阶段(地层学) 肠化生 活检 胃肠病学 癌症 内科学 土木工程 工程类 古生物学 生物
作者
Wenlu Niu,Leheng Liu,Zhiya Dong,Xiongzhu Bu,Fanghao Yao,JING WANG,Xiaowan Wu,Congying Chen,Tiancheng Mao,Yulun Wu,Lin Yuan,Xinjian Wan,Hui Zhou
出处
期刊:Digestive and Liver Disease [Elsevier]
标识
DOI:10.1016/j.dld.2024.02.001
摘要

Background and Purpose Patients with stage III or IV of operative link for gastric intestinal metaplasia assessment (OLGIM) are at a higher risk of gastric cancer (GC). We aimed to construct a deep learning (DL) model based on magnifying endoscopy with narrow-band imaging (ME-NBI) to evaluate OLGIM staging. Methods This study included 4473 ME-NBI images obtained from 803 patients at three endoscopy centres. The endoscopic expert marked intestinal metaplasia (IM) regions on endoscopic images of the target biopsy sites. Faster Region-Convolutional Neural Network model was used to grade IM lesions and predict OLGIM staging. Results The diagnostic performance of the model for IM grading in internal and external validation sets, as measured by the area under the curve (AUC), was 0.872 and 0.803, respectively. The accuracy of this model in predicting the high-risk stage of OLGIM was 84.0%, which was not statistically different from that of three junior (71.3%, p = 0.148) and three senior endoscopists (75.3%, p = 0.317) specially trained in endoscopic images corresponding to pathological IM grade, but higher than that of three untrained junior endoscopists (64.0%, p = 0.023). Conclusion This DL model can assist endoscopists in predicting OLGIM staging using ME-NBI without biopsy, thereby facilitating screening high-risk patients for GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高希希完成签到,获得积分10
刚刚
1秒前
纳米完成签到,获得积分10
3秒前
大模型应助傲娇石头采纳,获得10
5秒前
自驾小胖完成签到,获得积分20
6秒前
熹微发布了新的文献求助10
7秒前
8秒前
香蕉采梦完成签到,获得积分20
9秒前
10秒前
11秒前
情怀应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
渔舟唱晚应助科研通管家采纳,获得10
12秒前
杳鸢应助科研通管家采纳,获得10
12秒前
杳鸢应助科研通管家采纳,获得10
12秒前
渔舟唱晚应助科研通管家采纳,获得30
12秒前
mogu发布了新的文献求助10
15秒前
小丑鱼儿完成签到 ,获得积分10
15秒前
时尚又蓝发布了新的文献求助10
15秒前
尽快毕业发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
21秒前
星辰大海应助111采纳,获得10
21秒前
22秒前
莎普爱思发布了新的文献求助10
22秒前
23秒前
24秒前
Oveja发布了新的文献求助10
25秒前
25秒前
26秒前
暴躁的信封完成签到,获得积分20
26秒前
杜科研发布了新的文献求助10
28秒前
29秒前
29秒前
mogu完成签到,获得积分20
29秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
Manufacturing Consent: Changes in the Labor Process under Monopoly Capitalism 500
The Politics of Production: Factory Regimes under Capitalism and Socialism 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382980
求助须知:如何正确求助?哪些是违规求助? 2997340
关于积分的说明 8774389
捐赠科研通 2682906
什么是DOI,文献DOI怎么找? 1469353
科研通“疑难数据库(出版商)”最低求助积分说明 679368
邀请新用户注册赠送积分活动 671609