A Strategy based on Bioinformatics and Machine Learning Algorithms Reveals Potential Mechanisms of Shelian Capsule against Hepatocellular Carcinoma

小桶 基因 计算生物学 DNA微阵列 生物信息学 基因表达谱 微阵列分析技术 基因表达 遗传学 基因本体论 生物
作者
Xianqiang Zhou,Fang Tan,Suxian Zhang,Anan Wang,Tiansong Zhang
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:30 (5): 377-405 被引量:1
标识
DOI:10.2174/0113816128284465240108071554
摘要

Background: Hepatocellular carcinoma (HCC) is a prevalent and life-threatening form of cancer, with Shelian Capsule (SLC), a traditional Chinese medicine (TCM) formulation, being recommended for clinical treatment. However, the mechanisms underlying its efficacy remain elusive. This study sought to uncover the potential mechanisms of SLC in HCC treatment using bioinformatics methods. Methods: Bioactive components of SLC were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and HCC-related microarray chip data were sourced from the Gene Expression Omnibus (GEO) database. The selection criteria for components included OB ≧ 30% and DL ≧ 0.18. By integrating the results of differential expression analysis and weighted gene co-expression network analysis (WGCNA), disease-related genes were identified. Therapeutic targets were determined as shared items between candidate targets and disease genes. Protein-protein interaction (PPI) network analysis was conducted for concatenated genes, with core protein clusters identified using the MCODE plugin. Machine learning algorithms were applied to identify signature genes within therapeutic targets. Subsequently, immune cell infiltration analysis, single-cell RNA sequencing (sc-RNA seq) analysis, molecular docking, and ADME analysis were performed for the screened genes. Result: A total of 153 SLC ingredients and 170 candidate targets were identified, along with 494 HCCrelated disease genes. Overlapping items between disease genes and drug candidates represented therapeutic genes, and PPI network analysis was conducted using concatenated genes. MCODE1 and MCODE2 cluster genes underwent Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Four signature genes (TOP2A, CYP1A2, CYP2B6, and IGFBP3) were identified from 28 therapeutic genes using 3 machine learning algorithms, with ROC curves plotted. Molecular docking validated the interaction modes and binding abilities between signature genes and corresponding compounds, with free binding energy all <-7 kcal/mol. Finally, ADME analysis revealed similarities between certain SLC components and the clinical drugs Sorafenib and Lenvatinib. Conclusion: In summary, our study revealed that the mechanism underlying the anti-HCC effects of SLC involves interactions at three levels: components (quercetin, beta-sitosterol, kaempferol, baicalein, stigmasterol, and luteolin), pathways (PI3K-Akt signaling pathway, TNF signaling pathway, and IL-17 signaling pathway), and targets (TOP2A, CYP1A2, CYP2B6, and IGFBP3). This study provides preliminary insights into the potential pharmacological mechanisms of SLC in HCC treatment, aiming to support its clinical application and serve as a reference for future laboratory investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
txmjsn完成签到,获得积分10
2秒前
宇文傲龙完成签到 ,获得积分10
2秒前
唐唐的猫咪完成签到 ,获得积分10
2秒前
和谐乐完成签到 ,获得积分10
3秒前
更好的我完成签到,获得积分10
4秒前
一路发发发发发完成签到,获得积分10
5秒前
蔺契完成签到,获得积分20
5秒前
zzcherished完成签到,获得积分10
5秒前
慕青应助是容许鸭采纳,获得10
6秒前
传奇3应助aasdadsad采纳,获得10
7秒前
高大冷菱发布了新的文献求助10
8秒前
寒冷小兔子完成签到,获得积分10
9秒前
机智胡萝卜完成签到,获得积分10
9秒前
qianyu完成签到,获得积分10
9秒前
呵呵完成签到,获得积分10
10秒前
YJY完成签到,获得积分10
11秒前
zero完成签到,获得积分10
11秒前
温婉的访风完成签到 ,获得积分10
13秒前
可乐完成签到 ,获得积分10
13秒前
13秒前
keyanli发布了新的文献求助10
14秒前
qn完成签到,获得积分10
14秒前
liuhan完成签到 ,获得积分10
14秒前
14秒前
战战完成签到,获得积分10
15秒前
lewis完成签到 ,获得积分10
15秒前
山丘完成签到,获得积分10
15秒前
lhh0529yt完成签到,获得积分10
15秒前
冰激凌完成签到,获得积分10
15秒前
Arylkunst完成签到,获得积分10
17秒前
vv123456ha完成签到,获得积分10
17秒前
Flyzhang完成签到,获得积分10
17秒前
科研临时工完成签到,获得积分10
17秒前
易yi完成签到,获得积分10
17秒前
gobi完成签到 ,获得积分10
17秒前
武科大完成签到,获得积分10
17秒前
bkagyin应助高大冷菱采纳,获得10
18秒前
阿伟别摆烂了完成签到,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792