PAE planning: Radiation exposure and image quality of CT and CBCT

医学 图像质量 成像体模 核医学 血管造影 骨盆 放射科 图像(数学) 计算机科学 人工智能
作者
Beatrice Steiniger,Martin Fiebich,Marc‐Oliver Grimm,Amer Malouhi,Jürgen R. Reichenbach,Marcel Scheithauer,Ulf Teichgräber,Tobias Franiel
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111329-111329
标识
DOI:10.1016/j.ejrad.2024.111329
摘要

To determine accurate organ doses, effective doses, and image quality of computed tomography (CT) compared with cone beam CT (CBCT) for correct identification of prostatic arteries.A dual-energy CT scanner and a flat-panel angiography system were used. Dose measurements (gallbladder (g), intestine (i), bladder (b), prostate (p), testes (t), active bone marrow of pelvis (bmp) and femura (bmf)) were performed using an anthropomorphic phantom with 65 thermoluminescent dosimeters in the pelvis and abdomen region. For the calculation of the contrast-to-noise ratio (CNR) of the pelvic arteries, a patient whose weight and height were almost identical to those of the phantom was selected for each examination type.The effective dose of CT was 2.7 mSv and that of CBCT was 21.8 mSv. Phantom organ doses were lower for CT than for CBCT in all organs except the testes (g: 1.2 mGy vs. 3.3 mGy, i: 5.8 mGy vs. 23.9 mGy, b: 6.9 mGy vs. 19.4 mGy, p: 6.4 mGy vs. 13.2 mGy, t: 4.7 mGy vs. 2.4 mGy, bmp: 5.1 mGy vs. 18.2 mGy, bmf: 3.3 mGy vs. 6.6 mGy). For human pelvic arteries, the CNR of CT was better than that of CBCT, with the exception of one prostate artery that showed stenosis on CT. Evaluation by experienced radiologists also confirmed the better detectability of prostate arteries on CT examination.In our study preprocedural CT had lower organ doses and better image quality comparedd with CBCT and should be considered for the correct identification of prostatic arteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助又又s_1采纳,获得10
刚刚
wenwenwang完成签到 ,获得积分10
刚刚
哈哈哈发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
RF完成签到,获得积分10
6秒前
6秒前
苹果不平发布了新的文献求助10
7秒前
7秒前
英俊的铭应助666采纳,获得10
8秒前
8秒前
8秒前
8秒前
junyang发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
12秒前
13秒前
13秒前
13秒前
淡然炳发布了新的文献求助10
13秒前
14秒前
旋光活性发布了新的文献求助10
14秒前
old杜发布了新的文献求助10
15秒前
今后应助TTRRCEB采纳,获得10
17秒前
SciGPT应助王王碎冰冰采纳,获得10
18秒前
香蕉觅云应助辛勤的大雁采纳,获得10
18秒前
18秒前
18秒前
砍柴少年发布了新的文献求助10
19秒前
wallonce发布了新的文献求助10
19秒前
chun完成签到,获得积分10
19秒前
吃土心完成签到,获得积分10
20秒前
木子完成签到 ,获得积分10
20秒前
无花果应助LiuYingkang采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501