亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gender Identification of Chinese Mitten Crab Juveniles Based on Improved Faster R-CNN

人工智能 中华绒螯蟹 联营 计算机科学 模式识别(心理学) 生物 渔业 绒螯蟹
作者
Hao Gu,Ming Chen,Dongmei Gan
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (2): 908-908 被引量:1
标识
DOI:10.3390/app14020908
摘要

The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male and female characteristics and complex background environment, an algorithm C-SwinFaster for identifying the gender of Chinese mitten crab juveniles based on improved Faster R-CNN was proposed. This algorithm introduces Swin Transformer as the backbone network and an improved Path Aggregation Feature Pyramid Network (PAFPN) in the neck to obtain multi-scale high-level semantic feature maps, thereby improving the gender recognition accuracy of Chinese mitten crab male and female juveniles. Then, a self-attention mechanism is introduced into the region of interest pooling network (ROI Pooling) to enhance the model’s attention to the classification features of male and female crab juveniles and reduce background interference on the detection results. Additionally, we introduce an improved non-maximum suppression algorithm, termed Softer-NMS. This algorithm refines the process of determining precise target candidate boxes by modulating the confidence level, thereby enhancing detection accuracy. Finally, the focal loss function is introduced to train the model, reducing the weight of simple samples during the training process, and allowing the model to focus more on samples that are difficult to distinguish. Experimental results demonstrate that the enhanced C-SwinFaster algorithm significantly improves the identification accuracy of male and female Chinese mitten crab juveniles. The mean average precision (mAP) of this algorithm reaches 98.45%, marking a 10.33 percentage point increase over the original model. This algorithm has a good effect on the gender recognition of Chinese mitten crab juveniles and can provide technical support for the automatic classification of Chinese mitten crab juveniles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
shinn发布了新的文献求助10
9秒前
10秒前
11秒前
老婶子发布了新的文献求助10
13秒前
充电宝应助shinn采纳,获得10
13秒前
友好谷蓝发布了新的文献求助10
17秒前
20秒前
铭铭完成签到 ,获得积分10
20秒前
友好谷蓝完成签到,获得积分10
24秒前
24秒前
26秒前
29秒前
shinn发布了新的文献求助10
36秒前
无花果应助Omni采纳,获得10
37秒前
41秒前
42秒前
张元东完成签到 ,获得积分10
42秒前
MUYI发布了新的文献求助10
47秒前
科研通AI6.1应助taysun采纳,获得10
51秒前
快乐芷荷完成签到 ,获得积分10
1分钟前
炙热的南霜完成签到,获得积分10
1分钟前
无花果应助耕云钓月采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Tanya完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
MUYI完成签到,获得积分10
1分钟前
taysun发布了新的文献求助10
1分钟前
Lin完成签到,获得积分10
1分钟前
CodeCraft应助MUYI采纳,获得10
1分钟前
1分钟前
甜美的沅完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772446
求助须知:如何正确求助?哪些是违规求助? 5598683
关于积分的说明 15429642
捐赠科研通 4905409
什么是DOI,文献DOI怎么找? 2639381
邀请新用户注册赠送积分活动 1587308
关于科研通互助平台的介绍 1542165