Gender Identification of Chinese Mitten Crab Juveniles Based on Improved Faster R-CNN

人工智能 中华绒螯蟹 联营 计算机科学 模式识别(心理学) 生物 渔业 绒螯蟹
作者
Hao Gu,Ming Chen,Dongmei Gan
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (2): 908-908 被引量:1
标识
DOI:10.3390/app14020908
摘要

The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male and female characteristics and complex background environment, an algorithm C-SwinFaster for identifying the gender of Chinese mitten crab juveniles based on improved Faster R-CNN was proposed. This algorithm introduces Swin Transformer as the backbone network and an improved Path Aggregation Feature Pyramid Network (PAFPN) in the neck to obtain multi-scale high-level semantic feature maps, thereby improving the gender recognition accuracy of Chinese mitten crab male and female juveniles. Then, a self-attention mechanism is introduced into the region of interest pooling network (ROI Pooling) to enhance the model’s attention to the classification features of male and female crab juveniles and reduce background interference on the detection results. Additionally, we introduce an improved non-maximum suppression algorithm, termed Softer-NMS. This algorithm refines the process of determining precise target candidate boxes by modulating the confidence level, thereby enhancing detection accuracy. Finally, the focal loss function is introduced to train the model, reducing the weight of simple samples during the training process, and allowing the model to focus more on samples that are difficult to distinguish. Experimental results demonstrate that the enhanced C-SwinFaster algorithm significantly improves the identification accuracy of male and female Chinese mitten crab juveniles. The mean average precision (mAP) of this algorithm reaches 98.45%, marking a 10.33 percentage point increase over the original model. This algorithm has a good effect on the gender recognition of Chinese mitten crab juveniles and can provide technical support for the automatic classification of Chinese mitten crab juveniles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pond发布了新的文献求助10
1秒前
英俊的铭应助楼剑愁采纳,获得10
2秒前
畅快纸飞机完成签到,获得积分10
4秒前
风趣的天问关注了科研通微信公众号
5秒前
fls221完成签到,获得积分10
6秒前
7秒前
毛豆应助Zerone01001采纳,获得10
7秒前
pond完成签到,获得积分10
8秒前
沉静一刀完成签到 ,获得积分10
9秒前
阿猩a完成签到 ,获得积分10
9秒前
乐乐应助新恣助采纳,获得10
10秒前
高大冷菱完成签到 ,获得积分10
12秒前
楼剑愁完成签到,获得积分10
12秒前
12秒前
duanqianqian发布了新的文献求助10
13秒前
14秒前
16秒前
16秒前
16秒前
楼剑愁发布了新的文献求助10
16秒前
adam完成签到,获得积分10
17秒前
还好完成签到,获得积分10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
18秒前
18秒前
田様应助科研通管家采纳,获得10
18秒前
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得20
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
毛豆应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
酒醉的蝴蝶完成签到 ,获得积分10
18秒前
卡拉尔德发布了新的文献求助10
19秒前
20秒前
20秒前
易拉罐完成签到,获得积分10
22秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944883
关于积分的说明 8521919
捐赠科研通 2620620
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134