Gender Identification of Chinese Mitten Crab Juveniles Based on Improved Faster R-CNN

人工智能 中华绒螯蟹 联营 计算机科学 模式识别(心理学) 生物 渔业 绒螯蟹
作者
Hao Gu,Ming Chen,Dongmei Gan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (2): 908-908 被引量:1
标识
DOI:10.3390/app14020908
摘要

The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male and female characteristics and complex background environment, an algorithm C-SwinFaster for identifying the gender of Chinese mitten crab juveniles based on improved Faster R-CNN was proposed. This algorithm introduces Swin Transformer as the backbone network and an improved Path Aggregation Feature Pyramid Network (PAFPN) in the neck to obtain multi-scale high-level semantic feature maps, thereby improving the gender recognition accuracy of Chinese mitten crab male and female juveniles. Then, a self-attention mechanism is introduced into the region of interest pooling network (ROI Pooling) to enhance the model’s attention to the classification features of male and female crab juveniles and reduce background interference on the detection results. Additionally, we introduce an improved non-maximum suppression algorithm, termed Softer-NMS. This algorithm refines the process of determining precise target candidate boxes by modulating the confidence level, thereby enhancing detection accuracy. Finally, the focal loss function is introduced to train the model, reducing the weight of simple samples during the training process, and allowing the model to focus more on samples that are difficult to distinguish. Experimental results demonstrate that the enhanced C-SwinFaster algorithm significantly improves the identification accuracy of male and female Chinese mitten crab juveniles. The mean average precision (mAP) of this algorithm reaches 98.45%, marking a 10.33 percentage point increase over the original model. This algorithm has a good effect on the gender recognition of Chinese mitten crab juveniles and can provide technical support for the automatic classification of Chinese mitten crab juveniles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的寻琴应助贪玩阑香采纳,获得10
刚刚
1秒前
玛卡巴卡完成签到,获得积分10
2秒前
momo发布了新的文献求助10
2秒前
欢喜藏今完成签到,获得积分10
2秒前
HE完成签到,获得积分10
2秒前
kosmos完成签到,获得积分10
3秒前
3秒前
3秒前
无花果应助何困困不困采纳,获得10
4秒前
完美世界应助IUIU采纳,获得20
4秒前
meier1206完成签到,获得积分10
4秒前
nini完成签到,获得积分20
5秒前
思源应助嘿咻丶嘿哈采纳,获得10
6秒前
马大勺发布了新的文献求助10
6秒前
无问西东完成签到,获得积分0
6秒前
小咩发布了新的文献求助10
6秒前
深情安青应助久久采纳,获得10
6秒前
6秒前
巫马荧完成签到,获得积分10
7秒前
8秒前
Gengar发布了新的文献求助10
9秒前
wyd发布了新的文献求助10
9秒前
共享精神应助丰富的小不采纳,获得10
9秒前
香蕉觅云应助阿甲采纳,获得10
9秒前
可与发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
科研大苹果完成签到,获得积分10
11秒前
11秒前
13秒前
11关闭了11文献求助
14秒前
Leo完成签到,获得积分10
14秒前
小巧的烤鸡应助可与采纳,获得10
14秒前
zihanwang应助liyanglin采纳,获得10
14秒前
14秒前
16秒前
轻松的冬云完成签到,获得积分10
16秒前
wyd完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014