已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gender Identification of Chinese Mitten Crab Juveniles Based on Improved Faster R-CNN

人工智能 中华绒螯蟹 联营 计算机科学 模式识别(心理学) 生物 渔业 绒螯蟹
作者
Hao Gu,Ming Chen,Dongmei Gan
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (2): 908-908 被引量:1
标识
DOI:10.3390/app14020908
摘要

The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male and female characteristics and complex background environment, an algorithm C-SwinFaster for identifying the gender of Chinese mitten crab juveniles based on improved Faster R-CNN was proposed. This algorithm introduces Swin Transformer as the backbone network and an improved Path Aggregation Feature Pyramid Network (PAFPN) in the neck to obtain multi-scale high-level semantic feature maps, thereby improving the gender recognition accuracy of Chinese mitten crab male and female juveniles. Then, a self-attention mechanism is introduced into the region of interest pooling network (ROI Pooling) to enhance the model’s attention to the classification features of male and female crab juveniles and reduce background interference on the detection results. Additionally, we introduce an improved non-maximum suppression algorithm, termed Softer-NMS. This algorithm refines the process of determining precise target candidate boxes by modulating the confidence level, thereby enhancing detection accuracy. Finally, the focal loss function is introduced to train the model, reducing the weight of simple samples during the training process, and allowing the model to focus more on samples that are difficult to distinguish. Experimental results demonstrate that the enhanced C-SwinFaster algorithm significantly improves the identification accuracy of male and female Chinese mitten crab juveniles. The mean average precision (mAP) of this algorithm reaches 98.45%, marking a 10.33 percentage point increase over the original model. This algorithm has a good effect on the gender recognition of Chinese mitten crab juveniles and can provide technical support for the automatic classification of Chinese mitten crab juveniles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rye完成签到,获得积分10
刚刚
拼搏向上发布了新的文献求助30
3秒前
聪明夏波发布了新的文献求助10
4秒前
5秒前
优美凡白发布了新的文献求助10
5秒前
皮克阿普完成签到,获得积分10
6秒前
6秒前
皮克阿普发布了新的文献求助10
9秒前
辛勤的喉完成签到 ,获得积分10
9秒前
sh131完成签到,获得积分10
10秒前
小蓝发布了新的文献求助10
11秒前
11秒前
lld发布了新的文献求助10
12秒前
喵了个咪完成签到 ,获得积分10
13秒前
Akim应助lzx采纳,获得10
14秒前
Lucas应助晴子采纳,获得10
18秒前
nakl完成签到,获得积分10
19秒前
19秒前
所所应助花生米米米采纳,获得30
20秒前
ww完成签到 ,获得积分10
23秒前
范ER完成签到 ,获得积分10
25秒前
Lucas应助聪明夏波采纳,获得10
26秒前
乔滴滴完成签到 ,获得积分10
26秒前
乔滴滴完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
Zeeki完成签到 ,获得积分10
29秒前
懒得起名字完成签到 ,获得积分10
31秒前
33秒前
bkagyin应助优美凡白采纳,获得10
33秒前
晚意完成签到 ,获得积分10
33秒前
小巧的书桃完成签到,获得积分20
34秒前
熬夜波比给Nature的求助进行了留言
37秒前
38秒前
炙热一凤发布了新的文献求助10
38秒前
SciGPT应助曙丽盼采纳,获得10
38秒前
nojego完成签到,获得积分10
39秒前
40秒前
怡然剑成完成签到 ,获得积分10
40秒前
ffff完成签到 ,获得积分10
41秒前
芒果完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855366
关于积分的说明 15106647
捐赠科研通 4822329
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535540
关于科研通互助平台的介绍 1493816