光合作用
生物
活性氧
脱落酸
细胞生物学
转录组
生物化学
基因表达
基因
作者
Cheng‐Wei Qiu,Marvin Richmond,Yue Ma,Shuo Zhang,Wenxing Liu,Feng Xue,Imrul Mosaddek Ahmed,Feibo Wu
标识
DOI:10.1016/j.jhazmat.2023.133251
摘要
In plants, melatonin (MLT) is a versatile signaling molecule involved in promoting plant development and mitigating the damage caused by heavy metal exposure. Long non-coding RNAs (lncRNAs) are essential components in the plant's response to various abiotic stress, functioning within the gene regulatory network. Here, a hydroponic experiment was performed to explore the involvement of lncRNAs in MLT-mediated amelioration of cadmium (Cd) toxicity in rice plants. The results demonstrated that applying 250 mg L–1 MLT in a solution containing 10 μM Cd leads to an effective reduction of 30.0% in shoot Cd concentration. Remarkably, the treatment resulted in a 21.2% improvement in potassium and calcium uptake, a 164.5% enhancement in net photosynthetic rate, and a 33.2% decrease in malondialdehyde accumulation, resulting increases in plant height, root length, and biomass accumulation. Moreover, a transcriptome analysis revealed 2510 differentially expressed transcripts, including the Cd transporters (–3.82-fold downregulated) and the Cd tolerance-associated genes (1.24-fold upregulated). Notably, regulatory network prediction uncovered 6 differentially expressed lncRNAs that act as competitive endogenous RNA or in RNA complex interactions. These key lncRNAs regulate the expression of target genes that are involved in pectin and cellulose metabolism, scavenging of reactive oxygen species, salicylic acid-mediated defense response, and biosynthesis of brassinosteroids, which ultimately modify the cell wall for Cd adsorption, safeguard photosynthesis, and control hormone signaling to reduce Cd toxicity. Our results unveiled a crucial lncRNA-mediated mechanism underlying MLT's role in Cd detoxification in rice plants, providing potential applications in agricultural practices and environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI