异质结
材料科学
锂(药物)
电解质
过渡金属
阴极
多硫化物
化学工程
氮化物
纳米技术
光电子学
化学
阳极
图层(电子)
物理化学
电极
催化作用
内分泌学
工程类
医学
生物化学
作者
Jintao Liu,Lianghao Yu,Qiwen Ran,Xi’an Chen,Xueyu Wang,Xuedong He,Huile Jin,Tao Chen,Jun Song Chen,Daying Guo,Shun Wang
出处
期刊:Small
[Wiley]
日期:2024-03-08
卷期号:20 (31)
被引量:9
标识
DOI:10.1002/smll.202311750
摘要
Abstract The commercialization of lithium–sulfur (Li–S) battery is seriously hindered by the shuttle behavior of lithium (Li) polysulfide, slow conversion kinetics, and Li dendrite growth. Herein, a novel hierarchical p‐type iron nitride and n‐type vanadium nitride (p‐Fe 2 N/n‐VN) heterostructure with optimal electronic structure, confined in vesicle‐like N‐doped nanofibers (p‐Fe 2 N/n‐VN⊂PNCF), is meticulously constructed to work as “one stone two birds” dual‐functional hosts for both the sulfur cathode and Li anode. As demonstrated, the d‐band center of high‐spin Fe atom captures more electrons from V atom to realize more π* and moderate σ* bond electron filling and orbital occupation; thus, allowing moderate adsorption intensity for polysulfides and more effective d–p orbital hybridization to improve reaction kinetics. Meanwhile, this unique structure can dynamically balance the deposition and transport of Li on the anode; thereby, more effectively inhibiting Li dendrite growth and promoting the formation of a uniform solid electrolyte interface. The as‐assembled Li–S full batteries exhibit the conspicuous capacities and ultralong cycling lifespan over 2000 cycles at 5.0 C. Even at a higher S loading (20 mg cm −2 ) and lean electrolyte (2.5 µL mg −1 ), the full cells can still achieve an ultrahigh areal capacity of 16.1 mAh cm −2 after 500 cycles at 0.1 C.
科研通智能强力驱动
Strongly Powered by AbleSci AI