Assessing the resilience of complex ecological spatial networks using a cascading failure model

弹性(材料科学) 生态网络 节点(物理) 计算机科学 生态学 复杂网络 山麓 环境科学 环境资源管理 地理 工程类 生态系统 生物 热力学 物理 结构工程 万维网
作者
Qing Xiang,Huan Yu,Hong Huang,Feng Li,Lingfan Ju,Wenkai Hu,Peng Yu,Zongchun Deng,Y. Chen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:434: 140014-140014 被引量:5
标识
DOI:10.1016/j.jclepro.2023.140014
摘要

The resilience of ecological networks is an important guarantee for maintaining regional ecological stability. However, current research on the resilience of ecological networks does not take into account the dynamic processes of the network. This study is based on complex network theory, takes the southern foothills of the Qilian Mountains in China as the research area, and uses the shortest path method to construct an ecological network with 104 nodes and 306 edges. It then uses the cascading failure model to simulate the dynamic response process of the ecological network under different attack strategies, and uses this to evaluate the resilience of the complex ecological space. The research results show that The topological structure of the ecological space network in the southern foothills of the Qilian Mountains has the characteristics of fewer central high-degree nodes and more peripheral low-degree nodes; When the initial load intensity difference of each ecological node in the network is small, the attacked low-degree nodes make the decline in network resilience more obvious. When the initial load intensity difference of each ecological node in the network is large, the attacked high degree nodes make the decline in network resilience more obvious. The study suggests that maintaining the load of high degree nodes and increasing the capacity of low degree nodes are the keys to maintaining network stability. The results provide a new perspective for optimising ecological network configuration and protecting key areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐慕灵完成签到,获得积分10
2秒前
2秒前
JianYugen完成签到,获得积分10
2秒前
happy发布了新的文献求助10
3秒前
3秒前
4秒前
abe发布了新的文献求助10
5秒前
天天开心完成签到 ,获得积分10
5秒前
6秒前
7秒前
8秒前
所所应助clean采纳,获得10
9秒前
sad完成签到,获得积分10
10秒前
学术地瓜发布了新的文献求助10
10秒前
11秒前
12秒前
爱静静应助跳跃的访烟采纳,获得10
12秒前
在水一方应助圣晟胜采纳,获得10
13秒前
14秒前
14秒前
14秒前
segama完成签到 ,获得积分10
14秒前
在人中完成签到,获得积分10
14秒前
顾矜应助tangyuyi采纳,获得10
14秒前
我是老大应助满意冷荷采纳,获得10
17秒前
凝子老师发布了新的文献求助10
17秒前
Qinpy发布了新的文献求助20
18秒前
跳跃的访烟完成签到,获得积分10
18秒前
bkagyin应助janice采纳,获得10
19秒前
19秒前
clean发布了新的文献求助10
19秒前
会飞的木头应助Anquan采纳,获得10
21秒前
炫哥IRIS完成签到,获得积分10
21秒前
23秒前
思源应助凝子老师采纳,获得10
24秒前
hhx完成签到,获得积分10
26秒前
在水一方应助圣晟胜采纳,获得10
28秒前
希格斯玻色子完成签到,获得积分10
28秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849