Meta-Learning With Distributional Similarity Preference for Few-Shot Fault Diagnosis Under Varying Working Conditions

计算机科学 人工智能 机器学习 加权 相似性(几何) 稳健性(进化) 一般化 任务(项目管理) 融合机制 数据挖掘 数学 工程类 放射科 图像(数学) 基因 生物 脂质双层融合 病毒学 系统工程 病毒 化学 生物化学 数学分析 医学
作者
Chao Ren,Bin Jiang,Ningyun Lu,Silvio Simani,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (5): 2746-2756 被引量:7
标识
DOI:10.1109/tcyb.2023.3338768
摘要

Few-shot fault diagnosis is a challenging problem for complex engineering systems due to the shortage of enough annotated failure samples. This problem is increased by varying working conditions that are commonly encountered in real-world systems. Meta-learning is a promising strategy to solve this point, open issues remain unresolved in practical applications, such as domain adaptation, domain generalization, etc. This article attempts to improve domain adaptation and generalization by focusing on the distribution-shift robustness of meta-learning from the task generation perspective. In fact, few-shot fault diagnosis under varying working conditions allows to address the distribution shift problem in a natural way. An unsupervised across-tasks meta-learning strategy with distributional similarity preference is proposed, where the core is the distribution-distance-weighting mechanism. Differently from the naive random meta-train task generation strategy used in existing meta-learning methods, the source instances that present a more similar distribution with respect to the target instances gain larger weightings in the task generation. This strategy leads to a meta-task training set that is enough diverse, and at the same time can be easily learned due to the distribution similarity features of the source tasks. The proposed method introduces the concept of maximum mean discrepancy that is applied to derive the distribution distance of the measurements. Moreover, a model-agnostic meta-learning is applied to realize few-shot fault diagnosis under varying working conditions. The proposed solutions are verified and compared by considering two public datasets used for bearing fault diagnosis. The results show that the proposed strategy outperforms different related few-shot fault diagnosis methods under varying working conditions. Moreover, it is thus proved that, meta-learning with distribution similarity feature represents an effective approach for domain adaptation and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
乔木木发布了新的文献求助10
3秒前
充电宝应助Green采纳,获得10
4秒前
梦游游游完成签到,获得积分10
4秒前
EP管发布了新的文献求助10
6秒前
rong完成签到 ,获得积分10
7秒前
summer完成签到,获得积分10
8秒前
马尔斯发布了新的文献求助10
9秒前
jiangqingquan发布了新的文献求助10
9秒前
12秒前
稳重发布了新的文献求助10
13秒前
天天快乐应助一一采纳,获得10
14秒前
14秒前
隐形曼青应助徐彬荣采纳,获得10
14秒前
EP管完成签到,获得积分10
16秒前
马尔斯完成签到,获得积分10
16秒前
17秒前
Ava应助Hhhhh采纳,获得10
19秒前
19秒前
hero发布了新的文献求助10
19秒前
科研通AI5应助标致的伟泽采纳,获得10
19秒前
20秒前
21秒前
桐桐应助黎哈哈哈采纳,获得10
21秒前
苏楠完成签到,获得积分10
22秒前
高血压发布了新的文献求助10
23秒前
jingjing完成签到 ,获得积分10
23秒前
24秒前
一一发布了新的文献求助10
24秒前
海螺姑娘完成签到,获得积分10
25秒前
27秒前
SciGPT应助HL采纳,获得10
27秒前
27秒前
丢丢在吗发布了新的文献求助10
28秒前
科研通AI5应助jiacheng采纳,获得10
28秒前
苏楠发布了新的文献求助30
29秒前
sam发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807030
求助须知:如何正确求助?哪些是违规求助? 3351767
关于积分的说明 10355489
捐赠科研通 3067736
什么是DOI,文献DOI怎么找? 1684707
邀请新用户注册赠送积分活动 809895
科研通“疑难数据库(出版商)”最低求助积分说明 765733