Meta-Learning With Distributional Similarity Preference for Few-Shot Fault Diagnosis Under Varying Working Conditions

计算机科学 人工智能 机器学习 加权 相似性(几何) 稳健性(进化) 一般化 任务(项目管理) 融合机制 数据挖掘 数学 工程类 放射科 图像(数学) 基因 生物 脂质双层融合 病毒学 系统工程 病毒 化学 生物化学 数学分析 医学
作者
Chao Ren,Bin Jiang,Ningyun Lu,Silvio Simani,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (5): 2746-2756 被引量:18
标识
DOI:10.1109/tcyb.2023.3338768
摘要

Few-shot fault diagnosis is a challenging problem for complex engineering systems due to the shortage of enough annotated failure samples. This problem is increased by varying working conditions that are commonly encountered in real-world systems. Meta-learning is a promising strategy to solve this point, open issues remain unresolved in practical applications, such as domain adaptation, domain generalization, etc. This article attempts to improve domain adaptation and generalization by focusing on the distribution-shift robustness of meta-learning from the task generation perspective. In fact, few-shot fault diagnosis under varying working conditions allows to address the distribution shift problem in a natural way. An unsupervised across-tasks meta-learning strategy with distributional similarity preference is proposed, where the core is the distribution-distance-weighting mechanism. Differently from the naive random meta-train task generation strategy used in existing meta-learning methods, the source instances that present a more similar distribution with respect to the target instances gain larger weightings in the task generation. This strategy leads to a meta-task training set that is enough diverse, and at the same time can be easily learned due to the distribution similarity features of the source tasks. The proposed method introduces the concept of maximum mean discrepancy that is applied to derive the distribution distance of the measurements. Moreover, a model-agnostic meta-learning is applied to realize few-shot fault diagnosis under varying working conditions. The proposed solutions are verified and compared by considering two public datasets used for bearing fault diagnosis. The results show that the proposed strategy outperforms different related few-shot fault diagnosis methods under varying working conditions. Moreover, it is thus proved that, meta-learning with distribution similarity feature represents an effective approach for domain adaptation and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
qwe完成签到,获得积分10
5秒前
本是个江湖散人完成签到,获得积分10
6秒前
8秒前
11秒前
15秒前
那等不到的思恋完成签到 ,获得积分10
15秒前
15秒前
酷酷的涵蕾完成签到 ,获得积分10
17秒前
隐形白开水完成签到,获得积分0
18秒前
王正浩完成签到 ,获得积分10
22秒前
朝暮完成签到 ,获得积分10
25秒前
辛勤安梦完成签到,获得积分10
27秒前
姜菲菲完成签到,获得积分10
27秒前
fd163c完成签到,获得积分10
28秒前
温如军完成签到 ,获得积分10
32秒前
小张完成签到 ,获得积分10
32秒前
liuguohua126完成签到,获得积分10
35秒前
37秒前
杨涵完成签到 ,获得积分10
38秒前
41秒前
41秒前
46秒前
可爱的函函应助舒适松鼠采纳,获得10
47秒前
小梁完成签到,获得积分10
49秒前
Jyy77完成签到 ,获得积分10
52秒前
55秒前
57秒前
crystaler完成签到 ,获得积分10
58秒前
1分钟前
浪子完成签到,获得积分10
1分钟前
pengyh8完成签到 ,获得积分10
1分钟前
青黛完成签到 ,获得积分10
1分钟前
ryq327完成签到 ,获得积分10
1分钟前
LL完成签到,获得积分10
1分钟前
不倦应助科研通管家采纳,获得10
1分钟前
正己化人应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
不倦应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498637
求助须知:如何正确求助?哪些是违规求助? 4595826
关于积分的说明 14449838
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561