Meta-Learning With Distributional Similarity Preference for Few-Shot Fault Diagnosis Under Varying Working Conditions

计算机科学 人工智能 机器学习 加权 相似性(几何) 稳健性(进化) 一般化 任务(项目管理) 融合机制 数据挖掘 数学 工程类 放射科 图像(数学) 基因 生物 脂质双层融合 病毒学 系统工程 病毒 化学 生物化学 数学分析 医学
作者
Chao Ren,Bin Jiang,Ningyun Lu,Silvio Simani,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (5): 2746-2756 被引量:7
标识
DOI:10.1109/tcyb.2023.3338768
摘要

Few-shot fault diagnosis is a challenging problem for complex engineering systems due to the shortage of enough annotated failure samples. This problem is increased by varying working conditions that are commonly encountered in real-world systems. Meta-learning is a promising strategy to solve this point, open issues remain unresolved in practical applications, such as domain adaptation, domain generalization, etc. This article attempts to improve domain adaptation and generalization by focusing on the distribution-shift robustness of meta-learning from the task generation perspective. In fact, few-shot fault diagnosis under varying working conditions allows to address the distribution shift problem in a natural way. An unsupervised across-tasks meta-learning strategy with distributional similarity preference is proposed, where the core is the distribution-distance-weighting mechanism. Differently from the naive random meta-train task generation strategy used in existing meta-learning methods, the source instances that present a more similar distribution with respect to the target instances gain larger weightings in the task generation. This strategy leads to a meta-task training set that is enough diverse, and at the same time can be easily learned due to the distribution similarity features of the source tasks. The proposed method introduces the concept of maximum mean discrepancy that is applied to derive the distribution distance of the measurements. Moreover, a model-agnostic meta-learning is applied to realize few-shot fault diagnosis under varying working conditions. The proposed solutions are verified and compared by considering two public datasets used for bearing fault diagnosis. The results show that the proposed strategy outperforms different related few-shot fault diagnosis methods under varying working conditions. Moreover, it is thus proved that, meta-learning with distribution similarity feature represents an effective approach for domain adaptation and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜杜发布了新的文献求助10
1秒前
Cholly完成签到,获得积分10
1秒前
1秒前
SciGPT应助动听锦程采纳,获得10
1秒前
zyyyy发布了新的文献求助10
2秒前
罐装冰块完成签到,获得积分10
3秒前
3秒前
未曾提起完成签到,获得积分10
3秒前
含糊的文涛完成签到,获得积分20
4秒前
5秒前
XI_2001发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
啥也不懂完成签到,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得20
8秒前
烟花应助科研通管家采纳,获得10
8秒前
wanci应助鳗鱼凌旋采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得50
8秒前
Jasper应助科研通管家采纳,获得30
8秒前
可靠觅珍应助科研通管家采纳,获得20
8秒前
LYSM应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
9秒前
欧阳振应助科研通管家采纳,获得20
9秒前
Akim应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
小郭应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420