已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSDANet: A multi-scale dilation attention network for medical image segmentation

计算机科学 联营 增采样 人工智能 分割 棱锥(几何) 编码器 解码方法 膨胀(度量空间) 编码(内存) 模式识别(心理学) 特征提取 编码(集合论) 图像(数学) 算法 组合数学 操作系统 光学 物理 数学 集合(抽象数据类型) 程序设计语言
作者
Jinquan Zhang,Zhuang Luan,Lina Ni,Liang Qi,Xu Gong
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105889-105889 被引量:25
标识
DOI:10.1016/j.bspc.2023.105889
摘要

Deep learning shows excellent performance in medical image segmentation. However, a pooling operation in its encoding stage leads to feature loss and the ability of multi-scale contextual information extraction is insufficient. In addition, there is a semantic gap between low-level features and high-level features in the encoder–decoder. Inspired by an U-shaped network (UNet), this work proposes a multi-scale dilation attention network (MSDANet) for medical image segmentation. Specifically, it is mainly composed of a parallel dilation pooling module (PD), a multi-scale channel attention mechanism (MSCA), a multilayer perceptron squeeze and excitation module (MSE), a big kernel convolution module (BC), and a skip feature pyramid module (SFP). The proposed PD reduces the loss of subtle features during downsampling. In order to improve the extraction of effective features, MSCA, MSE and BC are used in encoding and decoding stages. In the skip connection stage, SPF is used to reduce the difference between the low-level and high-level semantic information to accelerate the network learning. We validate the proposed model on two publicly available medical image datasets. The results show that MSDANet has superior performance on several evaluation metrics compared to state-of-the-art methods. Code is available at https://github.com/1999luan/MSDANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助英勇阁采纳,获得10
1秒前
3秒前
善学以致用应助科研帽采纳,获得30
8秒前
yiyi完成签到,获得积分10
12秒前
纯真问丝发布了新的文献求助10
14秒前
一剑温柔完成签到 ,获得积分10
15秒前
16秒前
17秒前
19秒前
科研通AI5应助摩根采纳,获得10
20秒前
20秒前
zhounan发布了新的文献求助10
21秒前
危机的阁完成签到,获得积分10
22秒前
yiyi发布了新的文献求助10
24秒前
24秒前
科研帽发布了新的文献求助30
24秒前
summitekey发布了新的文献求助30
26秒前
CodeCraft应助zhounan采纳,获得10
27秒前
Waris完成签到 ,获得积分10
28秒前
科研帽完成签到,获得积分20
30秒前
浮游应助二项式定理采纳,获得10
31秒前
32秒前
养乐多敬你完成签到 ,获得积分10
33秒前
ifast完成签到 ,获得积分10
33秒前
阿撕匹林发布了新的文献求助10
37秒前
Lionnn完成签到 ,获得积分10
37秒前
蓝翔高材生完成签到 ,获得积分10
39秒前
科研通AI6应助危机的蜜粉采纳,获得30
40秒前
早早入眠完成签到,获得积分10
40秒前
calm完成签到,获得积分10
40秒前
zhounan完成签到,获得积分10
41秒前
姜羽完成签到,获得积分10
42秒前
太空工程师完成签到,获得积分10
43秒前
44秒前
46秒前
Gryff完成签到 ,获得积分10
46秒前
libin完成签到,获得积分20
47秒前
qz发布了新的文献求助10
49秒前
李好发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944474
求助须知:如何正确求助?哪些是违规求助? 4209382
关于积分的说明 13085189
捐赠科研通 3989085
什么是DOI,文献DOI怎么找? 2183984
邀请新用户注册赠送积分活动 1199325
关于科研通互助平台的介绍 1112262