Testing Conditional Independence Between Latent Variables by Independence Residuals

地方独立性 潜变量 条件独立性 数学 符号 统计 潜变量模型 独立性(概率论) 变量 线性回归 变量(数学) 回归分析 计算机科学 算术 数学分析
作者
Zhengming Chen,Jie Qiao,Feng Xie,Ruichu Cai,Zhifeng Hao,Keli Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 4586-4598 被引量:1
标识
DOI:10.1109/tnnls.2024.3368561
摘要

Conditional independence (CI) testing is an important problem, especially in causal discovery. Most testing methods assume that all variables are fully observable and then test the CI among the observed data. Such an assumption is often untenable beyond applications dealing with, e.g., psychological analysis about the mental health status and medical diagnosing (researchers need to consider the existence of latent variables in these scenarios); and typically adopted latent CI test schemes mainly suffer from robust or efficient issues. Accordingly, this article investigates the problem of testing CI between latent variables. To this end, we offer an auxiliary regression-based CI (AReCI) test by taking the measured variable as the surrogate variable of the latent variables to conduct the regression over the latent variables under the linear causal models, in which each latent variable has some certain measured variables. Specifically, given a pair of latent variables $L_X$ and $L_Y$ , and a corresponding latent variable set $\mathcal{L}_{O}$ , $L_X \CI L_Y | \mathcal{L}_{O}$ holds if and only if $A_{\{L_X\}}-\omega_1^\intercal A^{\prime}_{\{\mathcal{L}_{O}\}}$ and $A_{\{L_Y\}}-\omega_2^\intercal A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ are statistically independent, where $A^{\prime}$ and $A^{\prime\prime}$ are the two disjoint subset of the measured variable for the corresponding latent variables, $A^{\prime}_{\{\mathcal{L}_{O}\}} \cap A^{\prime\prime}_{\{\mathcal{L}_{O}\}} =\emptyset$ , and $\omega_1$ is a parameter vector characterized from the cross covariance between $A_{\{L_X\}}$ and $A^{\prime}_{\{\mathcal{L}_{O}\}}$ , and $\omega_{2}$ is a parameter vector characterized from the cross covariance between $A_{\{L_Y\}}$ and $A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ . We theoretically show that the AReCI test is capable of addressing both Gaussian and non-Gaussian data. In addition, we find that the well-known partial correlation test can be seen as a special case of the AReCI test. Finally, we devise a causal discovery method by using the AReCI test as the CI test. The experimental results on synthetic and real-world data illustrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助香蕉凌蝶采纳,获得10
刚刚
科目三应助tianliyan采纳,获得10
刚刚
小羊完成签到,获得积分10
刚刚
刚刚
1秒前
懦弱的易绿完成签到,获得积分10
1秒前
Agee_Feng完成签到,获得积分10
1秒前
缪缪发布了新的文献求助10
1秒前
tong发布了新的文献求助10
1秒前
chenhouhan发布了新的文献求助10
1秒前
1秒前
duduying发布了新的文献求助10
1秒前
还单身的尔琴完成签到,获得积分20
2秒前
Chris0120完成签到,获得积分10
2秒前
打打应助zsqqqqq采纳,获得10
2秒前
龙仔发布了新的文献求助10
2秒前
戈多来了发布了新的文献求助10
3秒前
chenping_an完成签到,获得积分10
3秒前
默默完成签到,获得积分10
3秒前
HaHa270完成签到,获得积分10
3秒前
太阳地里1911完成签到,获得积分10
3秒前
4秒前
小马甲应助一叶扁舟采纳,获得10
4秒前
糖炒小白云完成签到,获得积分10
4秒前
菠萝吹雪完成签到,获得积分10
4秒前
冲冲冲发布了新的文献求助10
4秒前
无极微光应助耳喃采纳,获得20
5秒前
羞涩的煎饼完成签到,获得积分10
5秒前
5秒前
眯眯眼的元芹完成签到,获得积分10
5秒前
5秒前
苗条映寒发布了新的文献求助10
5秒前
林献发布了新的文献求助10
5秒前
xiaoxue发布了新的文献求助10
6秒前
廿四完成签到 ,获得积分10
6秒前
6秒前
6秒前
Lucas应助猪猪hero采纳,获得10
6秒前
Xuan完成签到,获得积分10
7秒前
ying发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188