Testing Conditional Independence Between Latent Variables by Independence Residuals

地方独立性 潜变量 条件独立性 数学 符号 统计 潜变量模型 独立性(概率论) 变量 线性回归 变量(数学) 回归分析 计算机科学 算术 数学分析
作者
Zhengming Chen,Jie Qiao,Feng Xie,Ruichu Cai,Zhifeng Hao,Keli Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 4586-4598 被引量:1
标识
DOI:10.1109/tnnls.2024.3368561
摘要

Conditional independence (CI) testing is an important problem, especially in causal discovery. Most testing methods assume that all variables are fully observable and then test the CI among the observed data. Such an assumption is often untenable beyond applications dealing with, e.g., psychological analysis about the mental health status and medical diagnosing (researchers need to consider the existence of latent variables in these scenarios); and typically adopted latent CI test schemes mainly suffer from robust or efficient issues. Accordingly, this article investigates the problem of testing CI between latent variables. To this end, we offer an auxiliary regression-based CI (AReCI) test by taking the measured variable as the surrogate variable of the latent variables to conduct the regression over the latent variables under the linear causal models, in which each latent variable has some certain measured variables. Specifically, given a pair of latent variables $L_X$ and $L_Y$ , and a corresponding latent variable set $\mathcal{L}_{O}$ , $L_X \CI L_Y | \mathcal{L}_{O}$ holds if and only if $A_{\{L_X\}}-\omega_1^\intercal A^{\prime}_{\{\mathcal{L}_{O}\}}$ and $A_{\{L_Y\}}-\omega_2^\intercal A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ are statistically independent, where $A^{\prime}$ and $A^{\prime\prime}$ are the two disjoint subset of the measured variable for the corresponding latent variables, $A^{\prime}_{\{\mathcal{L}_{O}\}} \cap A^{\prime\prime}_{\{\mathcal{L}_{O}\}} =\emptyset$ , and $\omega_1$ is a parameter vector characterized from the cross covariance between $A_{\{L_X\}}$ and $A^{\prime}_{\{\mathcal{L}_{O}\}}$ , and $\omega_{2}$ is a parameter vector characterized from the cross covariance between $A_{\{L_Y\}}$ and $A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ . We theoretically show that the AReCI test is capable of addressing both Gaussian and non-Gaussian data. In addition, we find that the well-known partial correlation test can be seen as a special case of the AReCI test. Finally, we devise a causal discovery method by using the AReCI test as the CI test. The experimental results on synthetic and real-world data illustrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助lx采纳,获得10
1秒前
huhuhu完成签到,获得积分10
1秒前
FashionBoy应助公孙朝雨采纳,获得10
1秒前
1秒前
Jasper应助QJN采纳,获得10
1秒前
2秒前
我是老大应助韶邑采纳,获得10
2秒前
2秒前
wzx完成签到,获得积分10
2秒前
香蕉觅云应助stepha采纳,获得10
3秒前
南宫清涟应助Chloe采纳,获得10
4秒前
Stroeve完成签到,获得积分10
5秒前
李洁发布了新的文献求助10
5秒前
DAI正杰发布了新的文献求助10
5秒前
余馨怡完成签到,获得积分10
5秒前
2号发布了新的文献求助10
5秒前
5秒前
腦內小劇場完成签到 ,获得积分10
5秒前
阁主完成签到,获得积分10
6秒前
苗苗043完成签到,获得积分10
6秒前
6秒前
zqq发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
IMALL完成签到,获得积分10
8秒前
8秒前
领导范儿应助yx采纳,获得10
8秒前
9秒前
猪美丽完成签到,获得积分10
10秒前
踏实凡阳完成签到,获得积分10
10秒前
10秒前
奇怪的柒发布了新的文献求助10
10秒前
10秒前
父父发布了新的文献求助10
10秒前
muderder完成签到,获得积分10
11秒前
Criminology34应助找文献呢采纳,获得10
11秒前
张思梦发布了新的文献求助10
11秒前
霸气忙内发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718409
求助须知:如何正确求助?哪些是违规求助? 5252448
关于积分的说明 15285701
捐赠科研通 4868645
什么是DOI,文献DOI怎么找? 2614320
邀请新用户注册赠送积分活动 1564168
关于科研通互助平台的介绍 1521611