Testing Conditional Independence Between Latent Variables by Independence Residuals

地方独立性 潜变量 条件独立性 潜在类模型 协方差 数学 概率潜在语义分析 统计 结构方程建模 计量经济学 潜变量模型 独立性(概率论) 变量 变量(数学) 计算机科学 人工智能 数学分析
作者
Zhengming Chen,Jie Qiao,Feng Xie,Ruichu Cai,Zhifeng Hao,Keli Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3368561
摘要

Conditional independence (CI) testing is an important problem, especially in causal discovery. Most testing methods assume that all variables are fully observable and then test the CI among the observed data. Such an assumption is often untenable beyond applications dealing with, e.g., psychological analysis about the mental health status and medical diagnosing (researchers need to consider the existence of latent variables in these scenarios); and typically adopted latent CI test schemes mainly suffer from robust or efficient issues. Accordingly, this article investigates the problem of testing CI between latent variables. To this end, we offer an auxiliary regression-based CI (AReCI) test by taking the measured variable as the surrogate variable of the latent variables to conduct the regression over the latent variables under the linear causal models, in which each latent variable has some certain measured variables. Specifically, given a pair of latent variables LX and LY , and a corresponding latent variable set LO , [Formula: see text] holds if and only if [Formula: see text] and [Formula: see text] are statistically independent, where A' and A'' are the two disjoint subset of the measured variable for the corresponding latent variables, A'{LO} ∩A''{LO} = ∅ , and ω1 is a parameter vector characterized from the cross covariance between A{LX} and A'{LO} , and ω2 is a parameter vector characterized from the cross covariance between A{LY} and A''{LO} . We theoretically show that the AReCI test is capable of addressing both Gaussian and non-Gaussian data. In addition, we find that the well-known partial correlation test can be seen as a special case of the AReCI test. Finally, we devise a causal discovery method by using the AReCI test as the CI test. The experimental results on synthetic and real-world data illustrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tin啊呀呀发布了新的文献求助10
2秒前
Lucas应助fjr333采纳,获得10
3秒前
路143250完成签到,获得积分10
4秒前
4秒前
4秒前
可燃冰完成签到,获得积分10
6秒前
刘总完成签到,获得积分10
8秒前
nicenice发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
fuyunyouzi发布了新的文献求助10
9秒前
山谷与花发布了新的文献求助10
9秒前
10秒前
陆晓亦完成签到,获得积分10
13秒前
Zhaowx完成签到,获得积分10
13秒前
在水一方应助Tin啊呀呀采纳,获得10
13秒前
Gaojin锦完成签到,获得积分10
13秒前
十一发布了新的文献求助10
13秒前
云飞扬完成签到 ,获得积分10
15秒前
16秒前
17秒前
18秒前
nicenice完成签到,获得积分10
19秒前
19秒前
易三木完成签到,获得积分10
20秒前
岳霖风发布了新的文献求助10
21秒前
打打应助张尧摇摇摇采纳,获得10
21秒前
Math4396完成签到 ,获得积分10
22秒前
CL完成签到,获得积分10
22秒前
逍遥完成签到 ,获得积分20
23秒前
24秒前
wangermazi完成签到,获得积分10
27秒前
mzrrong完成签到 ,获得积分10
28秒前
gjww应助活泼的雨灵采纳,获得10
28秒前
WAYNE发布了新的文献求助20
28秒前
烟花应助夏天吃西瓜采纳,获得10
28秒前
29秒前
Jocd完成签到,获得积分10
30秒前
赘婿应助lyy采纳,获得10
30秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085834
求助须知:如何正确求助?哪些是违规求助? 2738698
关于积分的说明 7551384
捐赠科研通 2388489
什么是DOI,文献DOI怎么找? 1266613
科研通“疑难数据库(出版商)”最低求助积分说明 613512
版权声明 598591