Testing Conditional Independence Between Latent Variables by Independence Residuals

地方独立性 潜变量 条件独立性 潜在类模型 协方差 数学 概率潜在语义分析 统计 结构方程建模 计量经济学 潜变量模型 独立性(概率论) 变量 变量(数学) 计算机科学 人工智能 数学分析
作者
Zhengming Chen,Jie Qiao,Feng Xie,Ruichu Cai,Zhifeng Hao,Keli Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3368561
摘要

Conditional independence (CI) testing is an important problem, especially in causal discovery. Most testing methods assume that all variables are fully observable and then test the CI among the observed data. Such an assumption is often untenable beyond applications dealing with, e.g., psychological analysis about the mental health status and medical diagnosing (researchers need to consider the existence of latent variables in these scenarios); and typically adopted latent CI test schemes mainly suffer from robust or efficient issues. Accordingly, this article investigates the problem of testing CI between latent variables. To this end, we offer an auxiliary regression-based CI (AReCI) test by taking the measured variable as the surrogate variable of the latent variables to conduct the regression over the latent variables under the linear causal models, in which each latent variable has some certain measured variables. Specifically, given a pair of latent variables LX and LY , and a corresponding latent variable set LO , [Formula: see text] holds if and only if [Formula: see text] and [Formula: see text] are statistically independent, where A' and A'' are the two disjoint subset of the measured variable for the corresponding latent variables, A'{LO} ∩A''{LO} = ∅ , and ω1 is a parameter vector characterized from the cross covariance between A{LX} and A'{LO} , and ω2 is a parameter vector characterized from the cross covariance between A{LY} and A''{LO} . We theoretically show that the AReCI test is capable of addressing both Gaussian and non-Gaussian data. In addition, we find that the well-known partial correlation test can be seen as a special case of the AReCI test. Finally, we devise a causal discovery method by using the AReCI test as the CI test. The experimental results on synthetic and real-world data illustrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助柠木采纳,获得10
刚刚
刚刚
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
1秒前
1秒前
1秒前
威武的万仇完成签到 ,获得积分10
2秒前
迷路的水彤完成签到 ,获得积分10
2秒前
千里发布了新的文献求助10
2秒前
jogrgr完成签到,获得积分10
2秒前
夯大力完成签到,获得积分10
2秒前
啊娴仔完成签到,获得积分10
3秒前
3秒前
3秒前
韭菜发布了新的文献求助10
3秒前
Harlotte发布了新的文献求助20
4秒前
思源应助系统提示采纳,获得10
4秒前
蜡笔发布了新的文献求助30
4秒前
宋嬴一发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
HYLynn应助hetao286采纳,获得10
6秒前
8秒前
8秒前
夯大力发布了新的文献求助10
8秒前
8秒前
9秒前
自觉沛芹完成签到,获得积分10
9秒前
YukiXu完成签到 ,获得积分10
9秒前
9秒前
桐桐应助SXM采纳,获得10
10秒前
波特卡斯D艾斯完成签到 ,获得积分10
11秒前
852应助排骨炖豆角采纳,获得10
12秒前
12秒前
顾矜应助木子采纳,获得10
12秒前
feng发布了新的文献求助10
12秒前
成就的小熊猫完成签到,获得积分10
13秒前
13秒前
Morgenstern_ZH完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740