Testing Conditional Independence Between Latent Variables by Independence Residuals

地方独立性 潜变量 条件独立性 数学 符号 统计 潜变量模型 独立性(概率论) 变量 线性回归 变量(数学) 回归分析 计算机科学 算术 数学分析
作者
Zhengming Chen,Jie Qiao,Feng Xie,Ruichu Cai,Zhifeng Hao,Keli Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 4586-4598 被引量:1
标识
DOI:10.1109/tnnls.2024.3368561
摘要

Conditional independence (CI) testing is an important problem, especially in causal discovery. Most testing methods assume that all variables are fully observable and then test the CI among the observed data. Such an assumption is often untenable beyond applications dealing with, e.g., psychological analysis about the mental health status and medical diagnosing (researchers need to consider the existence of latent variables in these scenarios); and typically adopted latent CI test schemes mainly suffer from robust or efficient issues. Accordingly, this article investigates the problem of testing CI between latent variables. To this end, we offer an auxiliary regression-based CI (AReCI) test by taking the measured variable as the surrogate variable of the latent variables to conduct the regression over the latent variables under the linear causal models, in which each latent variable has some certain measured variables. Specifically, given a pair of latent variables $L_X$ and $L_Y$ , and a corresponding latent variable set $\mathcal{L}_{O}$ , $L_X \CI L_Y | \mathcal{L}_{O}$ holds if and only if $A_{\{L_X\}}-\omega_1^\intercal A^{\prime}_{\{\mathcal{L}_{O}\}}$ and $A_{\{L_Y\}}-\omega_2^\intercal A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ are statistically independent, where $A^{\prime}$ and $A^{\prime\prime}$ are the two disjoint subset of the measured variable for the corresponding latent variables, $A^{\prime}_{\{\mathcal{L}_{O}\}} \cap A^{\prime\prime}_{\{\mathcal{L}_{O}\}} =\emptyset$ , and $\omega_1$ is a parameter vector characterized from the cross covariance between $A_{\{L_X\}}$ and $A^{\prime}_{\{\mathcal{L}_{O}\}}$ , and $\omega_{2}$ is a parameter vector characterized from the cross covariance between $A_{\{L_Y\}}$ and $A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ . We theoretically show that the AReCI test is capable of addressing both Gaussian and non-Gaussian data. In addition, we find that the well-known partial correlation test can be seen as a special case of the AReCI test. Finally, we devise a causal discovery method by using the AReCI test as the CI test. The experimental results on synthetic and real-world data illustrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彩虹大侠完成签到,获得积分10
1秒前
拼搏诗翠完成签到 ,获得积分10
2秒前
2秒前
火星上昊焱完成签到 ,获得积分10
3秒前
garden发布了新的文献求助10
4秒前
4秒前
我爱学习完成签到,获得积分10
4秒前
panpanliumin完成签到,获得积分0
5秒前
5秒前
细心香烟完成签到 ,获得积分10
6秒前
6秒前
wlscj完成签到,获得积分10
6秒前
华仔应助大意的豌豆采纳,获得10
6秒前
7秒前
7秒前
隐形曼青应助健忘芹采纳,获得10
7秒前
小马甲应助拼搏的无颜采纳,获得10
7秒前
8秒前
garden完成签到,获得积分10
8秒前
peace发布了新的文献求助10
10秒前
欣慰的小甜瓜完成签到 ,获得积分10
10秒前
11秒前
zsp发布了新的文献求助10
11秒前
zlc发布了新的文献求助10
11秒前
12秒前
瞿qks完成签到,获得积分10
14秒前
15秒前
拼搏的无颜完成签到,获得积分10
15秒前
肖遥发布了新的文献求助10
15秒前
Raven应助咩啊咩吖采纳,获得10
15秒前
16秒前
有钱发布了新的文献求助10
17秒前
BiuBiu怪完成签到,获得积分10
17秒前
17秒前
我是老大应助文闵采纳,获得50
19秒前
19秒前
小艾发布了新的文献求助10
19秒前
20秒前
WTaMi发布了新的文献求助10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544