Testing Conditional Independence Between Latent Variables by Independence Residuals

地方独立性 潜变量 条件独立性 数学 符号 统计 潜变量模型 独立性(概率论) 变量 线性回归 变量(数学) 回归分析 计算机科学 算术 数学分析
作者
Zhengming Chen,Jie Qiao,Feng Xie,Ruichu Cai,Zhifeng Hao,Keli Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 4586-4598 被引量:1
标识
DOI:10.1109/tnnls.2024.3368561
摘要

Conditional independence (CI) testing is an important problem, especially in causal discovery. Most testing methods assume that all variables are fully observable and then test the CI among the observed data. Such an assumption is often untenable beyond applications dealing with, e.g., psychological analysis about the mental health status and medical diagnosing (researchers need to consider the existence of latent variables in these scenarios); and typically adopted latent CI test schemes mainly suffer from robust or efficient issues. Accordingly, this article investigates the problem of testing CI between latent variables. To this end, we offer an auxiliary regression-based CI (AReCI) test by taking the measured variable as the surrogate variable of the latent variables to conduct the regression over the latent variables under the linear causal models, in which each latent variable has some certain measured variables. Specifically, given a pair of latent variables $L_X$ and $L_Y$ , and a corresponding latent variable set $\mathcal{L}_{O}$ , $L_X \CI L_Y | \mathcal{L}_{O}$ holds if and only if $A_{\{L_X\}}-\omega_1^\intercal A^{\prime}_{\{\mathcal{L}_{O}\}}$ and $A_{\{L_Y\}}-\omega_2^\intercal A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ are statistically independent, where $A^{\prime}$ and $A^{\prime\prime}$ are the two disjoint subset of the measured variable for the corresponding latent variables, $A^{\prime}_{\{\mathcal{L}_{O}\}} \cap A^{\prime\prime}_{\{\mathcal{L}_{O}\}} =\emptyset$ , and $\omega_1$ is a parameter vector characterized from the cross covariance between $A_{\{L_X\}}$ and $A^{\prime}_{\{\mathcal{L}_{O}\}}$ , and $\omega_{2}$ is a parameter vector characterized from the cross covariance between $A_{\{L_Y\}}$ and $A^{\prime\prime}_{\{\mathcal{L}_{O}\}}$ . We theoretically show that the AReCI test is capable of addressing both Gaussian and non-Gaussian data. In addition, we find that the well-known partial correlation test can be seen as a special case of the AReCI test. Finally, we devise a causal discovery method by using the AReCI test as the CI test. The experimental results on synthetic and real-world data illustrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
重要的莫茗完成签到,获得积分10
2秒前
秋秋发布了新的文献求助10
3秒前
希望天下0贩的0应助hys采纳,获得10
3秒前
愤怒的灵松完成签到,获得积分10
3秒前
李是谁啊完成签到 ,获得积分10
3秒前
莫非完成签到,获得积分10
3秒前
zhao完成签到 ,获得积分10
4秒前
4秒前
美丽的如彤完成签到,获得积分10
4秒前
4秒前
5秒前
lurenxin关注了科研通微信公众号
6秒前
Fin2046完成签到,获得积分10
7秒前
杰瑞院士完成签到,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
优美紫槐应助caidan采纳,获得10
9秒前
哇哇哇发布了新的文献求助10
10秒前
充电宝应助李天书采纳,获得10
10秒前
元元完成签到 ,获得积分10
11秒前
lignin发布了新的文献求助10
11秒前
岳先生完成签到 ,获得积分10
12秒前
13秒前
安详忆梅发布了新的文献求助10
14秒前
优美紫槐应助天雨流芳采纳,获得10
14秒前
刘蕊完成签到,获得积分10
14秒前
15秒前
科研通AI6.1应助田田采纳,获得10
16秒前
科研通AI2S应助美丽的如彤采纳,获得10
16秒前
111发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
nnn完成签到,获得积分10
18秒前
lignin完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400