清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Observations of HONO and its precursors between urban and its surrounding agricultural fields: The vertical transports, sources and contribution to OH

气溶胶 焊剂(冶金) 大气科学 环境科学 平流 气象学 化学 地理 物理 地质学 有机化学 热力学
作者
Chengzhi Xing,Cheng Liu,Qihua Li,Shanshan Wang,Wei Tan,Tiliang Zou,Zhuang Wang,Chuan Lu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:915: 169159-169159 被引量:6
标识
DOI:10.1016/j.scitotenv.2023.169159
摘要

The insufficient study on vertical observations of main atmospheric reactive nitrogen oxides (NO2 and HONO) posed a great challenge to evaluate their intertransport between urban and agricultural areas, and to further learn the atmospheric nitrogen chemistry and the atmospheric oxidation capacity at high altitudes. A stereoscopic measurement campaign (satellite remote sensing, hyperspectral unmanned aerial vehicle (UAV) remote sensing and MAX-DOAS observation) was performed in a typical inland city Hefei and its surrounding agricultural fields from June to October 2022. Average aerosol vertical profiles exhibited a Gaussian shape above 100 m with maximum values of 0.67 km−1 and 0.55 km−1 at 300–400 m layer at Anhui University (AHU) and Changfeng (CF), respectively. The distinct layered structure was mainly attributed to regional transport. Average H2O and NO2 vertical profiles all showed a Gaussian shape and an exponential shape at AHU and CF, respectively. Moreover, the diurnal evolution of H2O profiles performed one peak and bi-peak patterns at AHU and CF, respectively, whereas the diurnal evolution of NO2 at two stations all exhibited bi-peak patterns attributed to vehicle emissions. Average HONO vertical profiles showed an exponential shape and a Gaussian shape at AHU and CF, respectively. Higher HONO (> 0.05 ppb) above 1.0 km at 14:00–16:00 was observed at CF. The transport flux analysis showed that the northern transport flux always larger than southern transport flux for aerosol and H2O. The maximum northern transport fluxes appeared at 300 m and surface for aerosol and H2O, respectively. It indicated that surrounding agricultural fields was an important source of atmospheric H2O of city. The southern transport flux was larger than northern transport flux for NO2, with a maximum net transport flux of 9.20 ppb m s−1 at 100 m. It demonstrated that NO2 transported from urban areas was an important source of NO2 in agricultural fields. For HONO, the southern transport flux was larger than northern transport flux under 100 m, whereas it was opposite above 100 m. It indicated that the HONO distributed at high altitudes at agricultural fields had potential to enhance the atmospheric oxidation capacity of urban area. The net horizontal transport fluxes of HONO of our defined cropland were 5.25 μg m−2 s−1 and -3.65 μg m−2 s−1 during non-fertilization and fertilization periods, respectively. It indicated that the cropland could obviously export HONO to surrounding atmosphere during the fertilization period. Deducing the contribution of direct emission, heterogeneous process was a major source of HONO at urban and agricultural areas. The average surface conversion rate of NO2-to-HONO (CHONO) was 0.01467 h−1, and this value decreased with the increase of height at urban station. While average surface CHONO was 0.0322 h−1 at agricultural fields, which was ~1.2–2.8 times higher than that at urban area. The CHONO at agricultural fields significantly increased with the increase of height. The average CHONO at 1.0 km was ~2.0–3.6 times higher than that at surface. That suggested that the heterogeneous process was the main HONO source at high altitudes at CF, and this process obviously correlated with aerosol and H2O. The higher OH production from HONO (P(OH)HONO) occurred at 0–200 m and 100–400 m with averaged values of 0.31 ppb h−1 and 0.39 ppb h−1 at AHU and CF, respectively. The high P(OH)HONO above 1.0 km at CF from September to October was strongly correlated with high O3 (> 80 ppb). This study emphasized the importance of the stereoscopic of HONO on the analysis of its distribution, evolution, source and atmospheric oxidizing contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小卡完成签到 ,获得积分10
7秒前
17秒前
Brave发布了新的文献求助10
20秒前
文艺的初南完成签到 ,获得积分10
26秒前
末末完成签到 ,获得积分10
29秒前
澜生完成签到 ,获得积分10
30秒前
雪花完成签到 ,获得积分10
33秒前
栀子红了完成签到 ,获得积分10
40秒前
负责的汉堡完成签到 ,获得积分10
41秒前
朱科源啊源完成签到 ,获得积分10
43秒前
西山菩提完成签到,获得积分10
43秒前
包容的忆灵完成签到 ,获得积分10
46秒前
50秒前
ceeray23应助科研通管家采纳,获得10
54秒前
你要学好完成签到 ,获得积分10
56秒前
56秒前
小事完成签到 ,获得积分10
57秒前
CHRIS发布了新的文献求助10
57秒前
gmc完成签到 ,获得积分10
57秒前
5433完成签到 ,获得积分10
59秒前
小郭发布了新的文献求助10
1分钟前
桐桐应助CHRIS采纳,获得10
1分钟前
牛马完成签到,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
Brave完成签到,获得积分10
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
苗条丹南完成签到 ,获得积分10
2分钟前
m李完成签到 ,获得积分10
2分钟前
自由的中蓝完成签到 ,获得积分10
2分钟前
kyle完成签到 ,获得积分10
2分钟前
2分钟前
叼面包的数学狗完成签到 ,获得积分10
2分钟前
oxear完成签到,获得积分10
2分钟前
小郭完成签到,获得积分10
2分钟前
快乐的芷巧完成签到,获得积分10
2分钟前
xfy完成签到,获得积分10
2分钟前
张振宇完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076070
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839