Contrast Enhancement Ultrasound Improves Diagnostic Accuracy for Thyroid Nodules: A Prospective Multi-Center Study

甲状腺结节 医学 接收机工作特性 超声造影 逻辑回归 放射科 超声波 恶性肿瘤 甲状腺 诊断准确性 对比度(视觉) 核医学 内科学 人工智能 计算机科学
作者
Jianming Li,Jianping Dou,Huarong Li,Xiao Fan,Jie Yu,Mingxing Xie,Ping Zhou,Lei Liang,Guangxi Zhou,Ying Che,Cun Liu,Zhibin Cong,Fangyi Liu,Zhiyu Han,Ping Liang
出处
期刊:Journal of the Endocrine Society [The Endocrine Society]
卷期号:8 (1)
标识
DOI:10.1210/jendso/bvad145
摘要

Abstract Objective To evaluate potential improvements in the diagnosis of thyroid nodules when conventional ultrasound (US) is combined with contrast-enhanced US (CEUS). Methods We recruited 515 participants with 323 malignant and 192 benign nodules, who underwent both US and CEUS examinations at 8 different medical centers in China between October 2020 and October 2021. We assessed the malignancy of thyroid nodules in US using the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TIRADS). Diagnostic criteria for US and US + CEUS were developed by investigators based on evaluations of sonographic features. Using multivariate logistic regression and receiver operating characteristic (ROC) analysis, we compared diagnostic performance between the 2 methods based on criteria identified by investigators and via statistical models. Results On the basis of diagnostic criteria identified by investigators, we measured statistically significant differences in area under the curve (AUC) values between ACR TIRADS (0.83) and CEUS TIRADS (0.87; P < .001). On the basis of diagnostic regression models, we found statistically significant differences in AUC values between US (0.76) and US + CEUS (0.84; P = .001). Models based on US + CEUS outperformed those based on US alone (Akaike information criterion of 347.7 and significant improvement in integrated discrimination). These results were confirmed by similar analyses applied to a validation cohort. Conclusion The accuracy of conventional US for differentiating between benign and malignant thyroid nodules can be improved by combining this approach with CEUS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Ck采纳,获得10
刚刚
繁星与北斗完成签到,获得积分10
刚刚
脑洞疼应助sai采纳,获得10
刚刚
丘比特应助xiaoziyi666采纳,获得10
刚刚
wanci应助我行我素采纳,获得10
1秒前
marinemiao发布了新的文献求助10
1秒前
111完成签到 ,获得积分10
1秒前
无辜黑夜完成签到,获得积分10
2秒前
3秒前
今夜不设防完成签到,获得积分10
3秒前
李健应助木子采纳,获得10
4秒前
爆米花发布了新的文献求助10
4秒前
4秒前
4秒前
可靠的老鼠完成签到,获得积分10
5秒前
落寞依珊应助master-f采纳,获得10
5秒前
wbh发布了新的文献求助10
6秒前
田様应助hu970采纳,获得10
6秒前
科研通AI2S应助钟是一梦采纳,获得10
6秒前
zzz完成签到,获得积分20
7秒前
好玩和有趣完成签到,获得积分10
7秒前
脂蛋白抗原完成签到,获得积分10
7秒前
7秒前
7秒前
虫虫完成签到,获得积分10
7秒前
8秒前
8秒前
喜悦的向珊完成签到,获得积分10
8秒前
8秒前
科研狗发布了新的文献求助10
8秒前
清爽绿凝发布了新的文献求助10
8秒前
8秒前
大个应助佰斯特威采纳,获得10
9秒前
JingP完成签到,获得积分10
10秒前
赘婿应助yuyu采纳,获得10
10秒前
蔡翌文完成签到 ,获得积分10
10秒前
crescendo完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740