Contrast Enhancement Ultrasound Improves Diagnostic Accuracy for Thyroid Nodules: A Prospective Multi-Center Study

甲状腺结节 医学 接收机工作特性 超声造影 逻辑回归 放射科 超声波 恶性肿瘤 甲状腺 诊断准确性 对比度(视觉) 核医学 内科学 人工智能 计算机科学
作者
Jianming Li,Jianping Dou,Huarong Li,Xiao Fan,Jie Yu,Mingxing Xie,Ping Zhou,Lei Liang,Guangxi Zhou,Ying Che,Cun Liu,Zhibin Cong,Fangyi Liu,Zhiyu Han,Ping Liang
出处
期刊:Journal of the Endocrine Society [The Endocrine Society]
卷期号:8 (1)
标识
DOI:10.1210/jendso/bvad145
摘要

Abstract Objective To evaluate potential improvements in the diagnosis of thyroid nodules when conventional ultrasound (US) is combined with contrast-enhanced US (CEUS). Methods We recruited 515 participants with 323 malignant and 192 benign nodules, who underwent both US and CEUS examinations at 8 different medical centers in China between October 2020 and October 2021. We assessed the malignancy of thyroid nodules in US using the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TIRADS). Diagnostic criteria for US and US + CEUS were developed by investigators based on evaluations of sonographic features. Using multivariate logistic regression and receiver operating characteristic (ROC) analysis, we compared diagnostic performance between the 2 methods based on criteria identified by investigators and via statistical models. Results On the basis of diagnostic criteria identified by investigators, we measured statistically significant differences in area under the curve (AUC) values between ACR TIRADS (0.83) and CEUS TIRADS (0.87; P < .001). On the basis of diagnostic regression models, we found statistically significant differences in AUC values between US (0.76) and US + CEUS (0.84; P = .001). Models based on US + CEUS outperformed those based on US alone (Akaike information criterion of 347.7 and significant improvement in integrated discrimination). These results were confirmed by similar analyses applied to a validation cohort. Conclusion The accuracy of conventional US for differentiating between benign and malignant thyroid nodules can be improved by combining this approach with CEUS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
1秒前
李同学完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
cy完成签到,获得积分10
4秒前
神明发布了新的文献求助10
4秒前
5秒前
5秒前
zhou完成签到 ,获得积分10
5秒前
刘文辉完成签到,获得积分20
5秒前
7秒前
情怀应助轩ou采纳,获得10
7秒前
自信的雅容完成签到 ,获得积分10
8秒前
Hello应助liu采纳,获得10
9秒前
violet完成签到,获得积分10
10秒前
yujie发布了新的文献求助10
10秒前
橘子汽水完成签到 ,获得积分20
10秒前
搜集达人应助烧瓶杀手采纳,获得100
14秒前
CipherSage应助Zz采纳,获得10
14秒前
无奈的qie完成签到,获得积分10
14秒前
pancake发布了新的文献求助150
15秒前
fion关注了科研通微信公众号
15秒前
神明完成签到,获得积分20
16秒前
科目三应助迅速吐司采纳,获得30
17秒前
17秒前
小菜发布了新的文献求助10
18秒前
19秒前
20秒前
中枢的水墨完成签到,获得积分10
20秒前
20秒前
ice完成签到 ,获得积分10
21秒前
齐明皓完成签到,获得积分10
21秒前
情怀应助神明采纳,获得10
22秒前
23秒前
终于开始完成签到,获得积分20
24秒前
月月发布了新的文献求助10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493021
求助须知:如何正确求助?哪些是违规求助? 4590907
关于积分的说明 14432996
捐赠科研通 4523615
什么是DOI,文献DOI怎么找? 2478427
邀请新用户注册赠送积分活动 1463444
关于科研通互助平台的介绍 1436115