Contrast Enhancement Ultrasound Improves Diagnostic Accuracy for Thyroid Nodules: A Prospective Multi-Center Study

甲状腺结节 医学 接收机工作特性 超声造影 逻辑回归 放射科 超声波 恶性肿瘤 甲状腺 诊断准确性 对比度(视觉) 核医学 内科学 人工智能 计算机科学
作者
Jianming Li,Jianping Dou,Huarong Li,Xiao Fan,Jie Yu,Mingxing Xie,Ping Zhou,Lei Liang,Guangxi Zhou,Ying Che,Cun Liu,Zhibin Cong,Fangyi Liu,Zhiyu Han,Ping Liang
出处
期刊:Journal of the Endocrine Society [The Endocrine Society]
卷期号:8 (1)
标识
DOI:10.1210/jendso/bvad145
摘要

Abstract Objective To evaluate potential improvements in the diagnosis of thyroid nodules when conventional ultrasound (US) is combined with contrast-enhanced US (CEUS). Methods We recruited 515 participants with 323 malignant and 192 benign nodules, who underwent both US and CEUS examinations at 8 different medical centers in China between October 2020 and October 2021. We assessed the malignancy of thyroid nodules in US using the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TIRADS). Diagnostic criteria for US and US + CEUS were developed by investigators based on evaluations of sonographic features. Using multivariate logistic regression and receiver operating characteristic (ROC) analysis, we compared diagnostic performance between the 2 methods based on criteria identified by investigators and via statistical models. Results On the basis of diagnostic criteria identified by investigators, we measured statistically significant differences in area under the curve (AUC) values between ACR TIRADS (0.83) and CEUS TIRADS (0.87; P < .001). On the basis of diagnostic regression models, we found statistically significant differences in AUC values between US (0.76) and US + CEUS (0.84; P = .001). Models based on US + CEUS outperformed those based on US alone (Akaike information criterion of 347.7 and significant improvement in integrated discrimination). These results were confirmed by similar analyses applied to a validation cohort. Conclusion The accuracy of conventional US for differentiating between benign and malignant thyroid nodules can be improved by combining this approach with CEUS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bear完成签到,获得积分20
1秒前
1秒前
1秒前
脑洞疼应助kento采纳,获得10
2秒前
天天快乐应助若离采纳,获得10
3秒前
4秒前
5秒前
5秒前
ucas大菠萝发布了新的文献求助10
5秒前
Ava应助呆萌剑通采纳,获得10
6秒前
嘿嘿应助淡淡翠曼采纳,获得10
7秒前
7秒前
dabao发布了新的文献求助10
8秒前
傲娇以寒完成签到 ,获得积分10
9秒前
9秒前
9秒前
LL完成签到,获得积分10
10秒前
开心的涵柳完成签到,获得积分10
10秒前
11秒前
小楠楠发布了新的文献求助10
11秒前
12秒前
好好发布了新的文献求助12
12秒前
12秒前
事上炼应助冰淇淋啦啦啦采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
852应助摸鱼宝采纳,获得10
13秒前
14秒前
丘比特应助刘子田采纳,获得10
14秒前
情怀应助刘子田采纳,获得10
14秒前
李新悦发布了新的文献求助10
15秒前
16秒前
若离发布了新的文献求助10
18秒前
18秒前
淡淡一凤发布了新的文献求助10
18秒前
科研通AI6应助dabao采纳,获得10
19秒前
不是阿花发布了新的文献求助10
19秒前
szy关注了科研通微信公众号
19秒前
大个应助日天化石采纳,获得10
19秒前
梦梦完成签到,获得积分10
20秒前
引子完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548256
关于积分的说明 14212896
捐赠科研通 4468451
什么是DOI,文献DOI怎么找? 2449037
邀请新用户注册赠送积分活动 1439959
关于科研通互助平台的介绍 1416594