Contrast Enhancement Ultrasound Improves Diagnostic Accuracy for Thyroid Nodules: A Prospective Multi-Center Study

甲状腺结节 医学 接收机工作特性 超声造影 逻辑回归 放射科 超声波 恶性肿瘤 甲状腺 诊断准确性 对比度(视觉) 核医学 内科学 人工智能 计算机科学
作者
Jianming Li,Jianping Dou,Huarong Li,Xiao Fan,Jie Yu,Mingxing Xie,Ping Zhou,Lei Liang,Guangxi Zhou,Ying Che,Cun Liu,Zhibin Cong,Fangyi Liu,Zhiyu Han,Ping Liang
出处
期刊:Journal of the Endocrine Society [Endocrine Society]
卷期号:8 (1)
标识
DOI:10.1210/jendso/bvad145
摘要

Abstract Objective To evaluate potential improvements in the diagnosis of thyroid nodules when conventional ultrasound (US) is combined with contrast-enhanced US (CEUS). Methods We recruited 515 participants with 323 malignant and 192 benign nodules, who underwent both US and CEUS examinations at 8 different medical centers in China between October 2020 and October 2021. We assessed the malignancy of thyroid nodules in US using the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TIRADS). Diagnostic criteria for US and US + CEUS were developed by investigators based on evaluations of sonographic features. Using multivariate logistic regression and receiver operating characteristic (ROC) analysis, we compared diagnostic performance between the 2 methods based on criteria identified by investigators and via statistical models. Results On the basis of diagnostic criteria identified by investigators, we measured statistically significant differences in area under the curve (AUC) values between ACR TIRADS (0.83) and CEUS TIRADS (0.87; P < .001). On the basis of diagnostic regression models, we found statistically significant differences in AUC values between US (0.76) and US + CEUS (0.84; P = .001). Models based on US + CEUS outperformed those based on US alone (Akaike information criterion of 347.7 and significant improvement in integrated discrimination). These results were confirmed by similar analyses applied to a validation cohort. Conclusion The accuracy of conventional US for differentiating between benign and malignant thyroid nodules can be improved by combining this approach with CEUS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮梦山完成签到 ,获得积分10
刚刚
内向的惜芹完成签到,获得积分10
1秒前
小青椒应助Bressanone采纳,获得30
2秒前
Ikkyu完成签到 ,获得积分10
3秒前
直率的钢铁侠完成签到,获得积分10
4秒前
4秒前
sxc发布了新的文献求助10
4秒前
Edinburgh完成签到,获得积分10
6秒前
烟花应助浅呀呀呀采纳,获得10
6秒前
liuzhongyi完成签到,获得积分10
7秒前
净净子完成签到 ,获得积分10
7秒前
zhujingyao完成签到,获得积分10
8秒前
9秒前
芋泥芝士完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
Lucky.完成签到 ,获得积分0
11秒前
qsxy发布了新的文献求助10
12秒前
wang完成签到,获得积分10
12秒前
sxc完成签到,获得积分10
14秒前
18秒前
18秒前
shiyi关注了科研通微信公众号
19秒前
独特纸飞机完成签到 ,获得积分10
20秒前
20秒前
21秒前
孤独丹秋完成签到,获得积分10
21秒前
qsxy完成签到,获得积分10
22秒前
Ezio_sunhao完成签到,获得积分10
23秒前
坚强胡萝卜完成签到,获得积分10
24秒前
Yang完成签到,获得积分20
24秒前
123完成签到,获得积分10
24秒前
25秒前
25秒前
yuchen完成签到,获得积分10
25秒前
木之尹发布了新的文献求助10
25秒前
雪飞杨完成签到 ,获得积分10
26秒前
单纯芹菜完成签到,获得积分10
26秒前
hahaha完成签到,获得积分10
27秒前
顺心抽屉完成签到 ,获得积分10
28秒前
灵舒完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304842
求助须知:如何正确求助?哪些是违规求助? 4451080
关于积分的说明 13850819
捐赠科研通 4338377
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376934
关于科研通互助平台的介绍 1344361