Predicting the bandgap and efficiency of perovskite solar cells using machine learning methods

概化理论 计算机科学 机器学习 稳健性(进化) 人工智能 钙钛矿(结构) 带隙 预测建模 数据挖掘 算法 材料科学 光电子学 数学 化学 统计 基因 生物化学 结晶学
作者
Asad Khan,Jeevan Kandel,Hilal Tayara,Kil To Chong
出处
期刊:Molecular Informatics [Wiley]
卷期号:43 (2) 被引量:7
标识
DOI:10.1002/minf.202300217
摘要

Abstract Rapid and accurate prediction of bandgaps and efficiency of perovskite solar cells is a crucial challenge for various solar cell applications. Existing theoretical and experimental methods often accurately measure these parameters; however, these methods are costly and time‐consuming. Machine learning‐based approaches offer a promising and computationally efficient method to address this problem. In this study, we trained different machine learning(ML) models using previously reported experimental data. Among the different ML models, the CatBoostRegressor performed better for both bandgap and efficiency approximations. We evaluated the proposed model using k‐fold cross‐validation and investigated the relative importance of input features using Shapley Additive Explanations (SHAP). SHAP interprets valuable insights into feature contributions of the prediction of the proposed model. Furthermore, we validated the performance of the proposed model using an independent dataset, demonstrating its robustness and generalizability beyond the training data. Our findings show that machine learning‐based approaches, with the aid of SHAP, can provide a promising and computationally efficient method for the accurate and rapid prediction of perovskite solar cell properties. The proposed model is expected to facilitate the discovery of new perovskite materials and is freely available at GitHub (https://github.com/AsadKhanJBNU/perovskite_bandgap_and_efficiency.git) for the perovskite community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
龙傲天发布了新的文献求助10
1秒前
hq6045x完成签到,获得积分10
1秒前
端庄的蜜粉完成签到,获得积分10
1秒前
EricaLee9812完成签到,获得积分10
2秒前
linshunan完成签到 ,获得积分10
2秒前
乌漆嘛黑发布了新的文献求助10
2秒前
江峰发布了新的文献求助10
2秒前
Cheng完成签到 ,获得积分0
2秒前
善学以致用应助日暮不评采纳,获得10
2秒前
孤独妙海发布了新的文献求助10
3秒前
辣目童子完成签到 ,获得积分10
3秒前
3秒前
哈哈发布了新的文献求助20
3秒前
3秒前
3秒前
乐乐应助张宁采纳,获得10
4秒前
传奇3应助张宁采纳,获得10
4秒前
daladala发布了新的文献求助10
4秒前
4秒前
ZTF完成签到,获得积分10
4秒前
领导范儿应助Wakey采纳,获得10
5秒前
田様应助刘刘大顺采纳,获得10
5秒前
香菜碗里来完成签到,获得积分10
5秒前
ALICE渡发布了新的文献求助10
5秒前
干净的小馒头完成签到 ,获得积分10
6秒前
6秒前
6秒前
暖暖发布了新的文献求助30
6秒前
wxy发布了新的文献求助30
7秒前
用户0921coins完成签到,获得积分10
7秒前
7秒前
gelinhao完成签到,获得积分10
7秒前
Timing侠完成签到,获得积分10
8秒前
9秒前
LL完成签到,获得积分10
9秒前
9秒前
zhanglongquan发布了新的文献求助10
9秒前
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149