概化理论
计算机科学
机器学习
稳健性(进化)
人工智能
钙钛矿(结构)
带隙
预测建模
数据挖掘
算法
材料科学
光电子学
数学
化学
统计
基因
生物化学
结晶学
作者
Asad Khan,Jeevan Kandel,Hilal Tayara,Kil To Chong
标识
DOI:10.1002/minf.202300217
摘要
Abstract Rapid and accurate prediction of bandgaps and efficiency of perovskite solar cells is a crucial challenge for various solar cell applications. Existing theoretical and experimental methods often accurately measure these parameters; however, these methods are costly and time‐consuming. Machine learning‐based approaches offer a promising and computationally efficient method to address this problem. In this study, we trained different machine learning(ML) models using previously reported experimental data. Among the different ML models, the CatBoostRegressor performed better for both bandgap and efficiency approximations. We evaluated the proposed model using k‐fold cross‐validation and investigated the relative importance of input features using Shapley Additive Explanations (SHAP). SHAP interprets valuable insights into feature contributions of the prediction of the proposed model. Furthermore, we validated the performance of the proposed model using an independent dataset, demonstrating its robustness and generalizability beyond the training data. Our findings show that machine learning‐based approaches, with the aid of SHAP, can provide a promising and computationally efficient method for the accurate and rapid prediction of perovskite solar cell properties. The proposed model is expected to facilitate the discovery of new perovskite materials and is freely available at GitHub (https://github.com/AsadKhanJBNU/perovskite_bandgap_and_efficiency.git) for the perovskite community.
科研通智能强力驱动
Strongly Powered by AbleSci AI