清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures

计算机科学 变形 体素 反向 形状优化 进化算法 有限元法 水准点(测量) 人工智能 算法 数学 结构工程 几何学 工程类 大地测量学 地理
作者
Xiaohao Sun,Luxia Yu,Yuanbo Liang,Kun Zhou,Frédéric Demoly,Ruoyu Zhao,Qi Hu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:: 105561-105561 被引量:1
标识
DOI:10.1016/j.jmps.2024.105561
摘要

Shape transformations of active composites (ACs) depend on the spatial distribution and active response of constituent materials. Voxel-level complex material distributions offer a vast possibility for attainable shape changes of 4D-printed ACs, while also posing a significant challenge in efficiently designing material distributions to achieve target shape changes. Here, we present an integrated machine learning (ML) and sequential subdomain optimization (SSO) approach for ultrafast inverse designs of 4D-printed AC structures. By leveraging the inherent sequential dependency, a recurrent neural network ML model and SSO are seamlessly integrated. For multiple target shapes of various complexities, ML-SSO demonstrates superior performance in optimization accuracy and speed, delivering results within second(s). When integrated with computer vision, ML-SSO also enables an ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets. Furthermore, ML-SSO empowered with a splicing strategy is capable of designing diverse lengthwise voxel configurations, thus showing exceptional adaptability to intricate target shapes with different lengths without compromising high speed and accuracy. As a comparison, for the benchmark three-period shape, the finite element and evolutionary algorithm (EA) method was estimated to need 219 days for the inverse design; the ML-EA achieved the design in 54min; the new ML-SSO with splicing strategy requires only 1.97s. By further leveraging appropriate symmetries, the highly efficient ML-SSO is employed to design active shape changes of 4D-printed lattice structures. The new ML-SSO approach thus provides a highly efficient tool for the design of various 4D-printed, shape-morphing AC structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
19秒前
蝎子莱莱xth完成签到,获得积分10
32秒前
氢锂钠钾铷铯钫完成签到,获得积分10
38秒前
Square完成签到,获得积分10
45秒前
47秒前
牛的滑发布了新的文献求助10
51秒前
Hello应助牛的滑采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
Owen应助菜菜子采纳,获得10
1分钟前
1分钟前
菜菜子发布了新的文献求助10
1分钟前
zcbb完成签到,获得积分10
1分钟前
菜菜子完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
usami42完成签到,获得积分10
2分钟前
2分钟前
drirshad完成签到,获得积分10
2分钟前
无奈代秋完成签到,获得积分10
3分钟前
赘婿应助无奈代秋采纳,获得10
3分钟前
3分钟前
4分钟前
无奈代秋发布了新的文献求助10
4分钟前
Zhu完成签到 ,获得积分10
4分钟前
Yini应助科研通管家采纳,获得100
4分钟前
lzy完成签到,获得积分10
5分钟前
Akim应助科研通管家采纳,获得10
6分钟前
nbtzy完成签到,获得积分10
7分钟前
研友_拓跋戾完成签到,获得积分10
7分钟前
汉堡包应助研友_拓跋戾采纳,获得10
7分钟前
量子星尘发布了新的文献求助50
7分钟前
方白秋完成签到,获得积分0
7分钟前
8分钟前
ljl86400完成签到,获得积分10
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
多亿点完成签到 ,获得积分10
10分钟前
usami42发布了新的文献求助10
10分钟前
lovelife完成签到,获得积分10
11分钟前
开心每一天完成签到 ,获得积分10
11分钟前
披着羊皮的狼完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910339
求助须知:如何正确求助?哪些是违规求助? 4186233
关于积分的说明 12999210
捐赠科研通 3953640
什么是DOI,文献DOI怎么找? 2168011
邀请新用户注册赠送积分活动 1186464
关于科研通互助平台的介绍 1093597