Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures

计算机科学 变形 体素 反向 形状优化 进化算法 有限元法 水准点(测量) 人工智能 算法 数学 结构工程 几何学 工程类 大地测量学 地理
作者
Xiaohao Sun,Luxia Yu,Yuanbo Liang,Kun Zhou,Frédéric Demoly,Ruoyu Zhao,Qi Hu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:: 105561-105561 被引量:1
标识
DOI:10.1016/j.jmps.2024.105561
摘要

Shape transformations of active composites (ACs) depend on the spatial distribution and active response of constituent materials. Voxel-level complex material distributions offer a vast possibility for attainable shape changes of 4D-printed ACs, while also posing a significant challenge in efficiently designing material distributions to achieve target shape changes. Here, we present an integrated machine learning (ML) and sequential subdomain optimization (SSO) approach for ultrafast inverse designs of 4D-printed AC structures. By leveraging the inherent sequential dependency, a recurrent neural network ML model and SSO are seamlessly integrated. For multiple target shapes of various complexities, ML-SSO demonstrates superior performance in optimization accuracy and speed, delivering results within second(s). When integrated with computer vision, ML-SSO also enables an ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets. Furthermore, ML-SSO empowered with a splicing strategy is capable of designing diverse lengthwise voxel configurations, thus showing exceptional adaptability to intricate target shapes with different lengths without compromising high speed and accuracy. As a comparison, for the benchmark three-period shape, the finite element and evolutionary algorithm (EA) method was estimated to need 219 days for the inverse design; the ML-EA achieved the design in 54min; the new ML-SSO with splicing strategy requires only 1.97s. By further leveraging appropriate symmetries, the highly efficient ML-SSO is employed to design active shape changes of 4D-printed lattice structures. The new ML-SSO approach thus provides a highly efficient tool for the design of various 4D-printed, shape-morphing AC structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈情发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
2秒前
谢戴竹发布了新的文献求助30
2秒前
dxxcshin完成签到,获得积分10
2秒前
2秒前
2秒前
安详的冰蝶完成签到,获得积分10
3秒前
白晨完成签到,获得积分20
3秒前
3秒前
受伤灵薇完成签到,获得积分10
4秒前
阿怪完成签到,获得积分10
6秒前
6秒前
李健的小迷弟应助btmy16采纳,获得10
6秒前
Singularity应助ZHOUZHOU采纳,获得10
7秒前
7秒前
7秒前
吉吉完成签到 ,获得积分10
8秒前
SciGPT应助lili采纳,获得10
8秒前
9秒前
9秒前
river_121完成签到,获得积分10
9秒前
relevance完成签到,获得积分10
10秒前
思源应助白晨采纳,获得10
10秒前
骆123关注了科研通微信公众号
11秒前
11秒前
Owen应助dwj采纳,获得10
11秒前
所所应助会飞的猪采纳,获得10
12秒前
大知闲闲发布了新的文献求助10
13秒前
xiaowan完成签到,获得积分20
13秒前
小伍发布了新的文献求助10
14秒前
CC完成签到 ,获得积分10
15秒前
mouhao1发布了新的文献求助10
16秒前
Sega完成签到,获得积分10
16秒前
谢戴竹完成签到,获得积分20
16秒前
陈情完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助150
18秒前
浮游应助ZHOUZHOU采纳,获得10
18秒前
19秒前
小二郎应助认真的不斜采纳,获得10
19秒前
熊11发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099