Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures

计算机科学 变形 体素 反向 形状优化 进化算法 有限元法 水准点(测量) 人工智能 算法 数学 结构工程 几何学 工程类 大地测量学 地理
作者
Xiaohao Sun,Luxia Yu,Yuanbo Liang,Kun Zhou,Frédéric Demoly,Ruoyu Zhao,Qi Hu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:: 105561-105561 被引量:1
标识
DOI:10.1016/j.jmps.2024.105561
摘要

Shape transformations of active composites (ACs) depend on the spatial distribution and active response of constituent materials. Voxel-level complex material distributions offer a vast possibility for attainable shape changes of 4D-printed ACs, while also posing a significant challenge in efficiently designing material distributions to achieve target shape changes. Here, we present an integrated machine learning (ML) and sequential subdomain optimization (SSO) approach for ultrafast inverse designs of 4D-printed AC structures. By leveraging the inherent sequential dependency, a recurrent neural network ML model and SSO are seamlessly integrated. For multiple target shapes of various complexities, ML-SSO demonstrates superior performance in optimization accuracy and speed, delivering results within second(s). When integrated with computer vision, ML-SSO also enables an ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets. Furthermore, ML-SSO empowered with a splicing strategy is capable of designing diverse lengthwise voxel configurations, thus showing exceptional adaptability to intricate target shapes with different lengths without compromising high speed and accuracy. As a comparison, for the benchmark three-period shape, the finite element and evolutionary algorithm (EA) method was estimated to need 219 days for the inverse design; the ML-EA achieved the design in 54min; the new ML-SSO with splicing strategy requires only 1.97s. By further leveraging appropriate symmetries, the highly efficient ML-SSO is employed to design active shape changes of 4D-printed lattice structures. The new ML-SSO approach thus provides a highly efficient tool for the design of various 4D-printed, shape-morphing AC structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追风少年发布了新的文献求助10
刚刚
刚刚
蔚蓝发布了新的文献求助10
1秒前
艺玲发布了新的文献求助10
3秒前
正常发布了新的文献求助10
3秒前
多多肉完成签到,获得积分10
3秒前
有点儿微胖完成签到,获得积分10
4秒前
豆4799完成签到,获得积分10
6秒前
ruby关注了科研通微信公众号
7秒前
JUGG发布了新的文献求助10
7秒前
牛马鹅完成签到,获得积分20
7秒前
gusgusgus完成签到,获得积分10
9秒前
Zy发布了新的文献求助10
10秒前
11秒前
11秒前
一平方米的大草原完成签到 ,获得积分10
12秒前
QINXIAOTONG完成签到,获得积分10
13秒前
Owen应助12123浪采纳,获得10
13秒前
lele完成签到,获得积分10
14秒前
我是老大应助大海捞针2025采纳,获得10
15秒前
华仔应助沉静弘文采纳,获得10
15秒前
15秒前
16秒前
李健应助tanfor采纳,获得10
16秒前
英俊的铭应助直率的雪巧采纳,获得10
17秒前
19秒前
啦啦啦完成签到 ,获得积分10
19秒前
lionel发布了新的文献求助10
20秒前
21秒前
渴望者发布了新的文献求助10
22秒前
22秒前
研友_Z30Kz8完成签到,获得积分10
22秒前
清秀的怀蕊完成签到 ,获得积分10
23秒前
叶十七完成签到,获得积分10
24秒前
24秒前
xiangoak完成签到 ,获得积分10
24秒前
大方万仇完成签到 ,获得积分10
24秒前
ruby发布了新的文献求助10
25秒前
26秒前
lin完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164