Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures

计算机科学 变形 体素 反向 形状优化 进化算法 有限元法 水准点(测量) 人工智能 算法 数学 结构工程 几何学 工程类 大地测量学 地理
作者
Xiaohao Sun,Luxia Yu,Yuanbo Liang,Kun Zhou,Frédéric Demoly,Ruoyu Zhao,Qi Hu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:: 105561-105561 被引量:1
标识
DOI:10.1016/j.jmps.2024.105561
摘要

Shape transformations of active composites (ACs) depend on the spatial distribution and active response of constituent materials. Voxel-level complex material distributions offer a vast possibility for attainable shape changes of 4D-printed ACs, while also posing a significant challenge in efficiently designing material distributions to achieve target shape changes. Here, we present an integrated machine learning (ML) and sequential subdomain optimization (SSO) approach for ultrafast inverse designs of 4D-printed AC structures. By leveraging the inherent sequential dependency, a recurrent neural network ML model and SSO are seamlessly integrated. For multiple target shapes of various complexities, ML-SSO demonstrates superior performance in optimization accuracy and speed, delivering results within second(s). When integrated with computer vision, ML-SSO also enables an ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets. Furthermore, ML-SSO empowered with a splicing strategy is capable of designing diverse lengthwise voxel configurations, thus showing exceptional adaptability to intricate target shapes with different lengths without compromising high speed and accuracy. As a comparison, for the benchmark three-period shape, the finite element and evolutionary algorithm (EA) method was estimated to need 219 days for the inverse design; the ML-EA achieved the design in 54min; the new ML-SSO with splicing strategy requires only 1.97s. By further leveraging appropriate symmetries, the highly efficient ML-SSO is employed to design active shape changes of 4D-printed lattice structures. The new ML-SSO approach thus provides a highly efficient tool for the design of various 4D-printed, shape-morphing AC structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxy完成签到,获得积分10
2秒前
2秒前
贝贝贝完成签到,获得积分10
3秒前
sxy发布了新的文献求助10
4秒前
4秒前
在水一方应助淡淡紫山采纳,获得10
4秒前
5秒前
科小白发布了新的文献求助10
6秒前
7秒前
幸福的手套完成签到 ,获得积分10
8秒前
泡泡啰叽发布了新的文献求助10
8秒前
8秒前
hmhu发布了新的文献求助10
9秒前
wang_qi发布了新的文献求助10
9秒前
飞奔向你完成签到,获得积分10
12秒前
醍醐不醒发布了新的文献求助10
12秒前
13秒前
sl完成签到,获得积分20
14秒前
15秒前
畅快的刚完成签到 ,获得积分10
16秒前
还行吧完成签到 ,获得积分10
16秒前
17秒前
17秒前
lycoris发布了新的文献求助10
20秒前
yang发布了新的文献求助10
20秒前
科小白完成签到,获得积分10
20秒前
任性汉堡发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
小蘑菇应助Qwe采纳,获得10
23秒前
SYLH应助zhaoyali采纳,获得10
24秒前
25秒前
25秒前
1762571452完成签到,获得积分10
25秒前
所所应助潘宋采纳,获得10
25秒前
胡杰完成签到,获得积分10
26秒前
Sjk关注了科研通微信公众号
26秒前
子健完成签到,获得积分10
27秒前
yang完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421