Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures

计算机科学 变形 体素 反向 形状优化 进化算法 有限元法 水准点(测量) 人工智能 算法 数学 结构工程 几何学 工程类 大地测量学 地理
作者
Xiaohao Sun,Luxia Yu,Yuanbo Liang,Kun Zhou,Frédéric Demoly,Ruoyu Zhao,Qi Hu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:: 105561-105561 被引量:1
标识
DOI:10.1016/j.jmps.2024.105561
摘要

Shape transformations of active composites (ACs) depend on the spatial distribution and active response of constituent materials. Voxel-level complex material distributions offer a vast possibility for attainable shape changes of 4D-printed ACs, while also posing a significant challenge in efficiently designing material distributions to achieve target shape changes. Here, we present an integrated machine learning (ML) and sequential subdomain optimization (SSO) approach for ultrafast inverse designs of 4D-printed AC structures. By leveraging the inherent sequential dependency, a recurrent neural network ML model and SSO are seamlessly integrated. For multiple target shapes of various complexities, ML-SSO demonstrates superior performance in optimization accuracy and speed, delivering results within second(s). When integrated with computer vision, ML-SSO also enables an ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets. Furthermore, ML-SSO empowered with a splicing strategy is capable of designing diverse lengthwise voxel configurations, thus showing exceptional adaptability to intricate target shapes with different lengths without compromising high speed and accuracy. As a comparison, for the benchmark three-period shape, the finite element and evolutionary algorithm (EA) method was estimated to need 219 days for the inverse design; the ML-EA achieved the design in 54min; the new ML-SSO with splicing strategy requires only 1.97s. By further leveraging appropriate symmetries, the highly efficient ML-SSO is employed to design active shape changes of 4D-printed lattice structures. The new ML-SSO approach thus provides a highly efficient tool for the design of various 4D-printed, shape-morphing AC structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dudu完成签到,获得积分10
1秒前
1秒前
历史真相完成签到,获得积分10
1秒前
西波磕拉底完成签到,获得积分10
1秒前
科研通AI6应助瘦瘦安梦采纳,获得10
2秒前
kk发布了新的文献求助10
2秒前
呆萌念云完成签到 ,获得积分10
2秒前
清新发布了新的文献求助10
2秒前
金枪鱼完成签到,获得积分10
3秒前
3秒前
3秒前
yeyeye应助奔奔采纳,获得10
4秒前
罗兴鲜发布了新的文献求助10
4秒前
p454q完成签到 ,获得积分10
4秒前
刘钱美子完成签到,获得积分10
4秒前
5秒前
hututu完成签到,获得积分10
5秒前
SciGPT应助田乐天采纳,获得10
6秒前
英勇的雁发布了新的文献求助10
6秒前
大肥羊发布了新的文献求助10
6秒前
勤劳的蓝完成签到,获得积分10
6秒前
6秒前
毕业毕业完成签到,获得积分20
7秒前
完美世界应助平常星星采纳,获得10
7秒前
7秒前
cos发布了新的文献求助10
7秒前
Camus完成签到,获得积分10
7秒前
8秒前
Jessieliao发布了新的文献求助10
8秒前
8秒前
温暖的以旋完成签到,获得积分10
8秒前
小羽完成签到 ,获得积分10
9秒前
tennisgirl完成签到 ,获得积分10
9秒前
立青完成签到 ,获得积分10
9秒前
orixero应助enen采纳,获得30
9秒前
10秒前
10秒前
周轩发布了新的文献求助20
10秒前
田乐天完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644