Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures

计算机科学 变形 体素 反向 形状优化 进化算法 有限元法 水准点(测量) 人工智能 算法 数学 结构工程 几何学 工程类 大地测量学 地理
作者
Xiaohao Sun,Luxia Yu,Yuanbo Liang,Kun Zhou,Frédéric Demoly,Ruoyu Zhao,Qi Hu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:: 105561-105561 被引量:1
标识
DOI:10.1016/j.jmps.2024.105561
摘要

Shape transformations of active composites (ACs) depend on the spatial distribution and active response of constituent materials. Voxel-level complex material distributions offer a vast possibility for attainable shape changes of 4D-printed ACs, while also posing a significant challenge in efficiently designing material distributions to achieve target shape changes. Here, we present an integrated machine learning (ML) and sequential subdomain optimization (SSO) approach for ultrafast inverse designs of 4D-printed AC structures. By leveraging the inherent sequential dependency, a recurrent neural network ML model and SSO are seamlessly integrated. For multiple target shapes of various complexities, ML-SSO demonstrates superior performance in optimization accuracy and speed, delivering results within second(s). When integrated with computer vision, ML-SSO also enables an ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets. Furthermore, ML-SSO empowered with a splicing strategy is capable of designing diverse lengthwise voxel configurations, thus showing exceptional adaptability to intricate target shapes with different lengths without compromising high speed and accuracy. As a comparison, for the benchmark three-period shape, the finite element and evolutionary algorithm (EA) method was estimated to need 219 days for the inverse design; the ML-EA achieved the design in 54min; the new ML-SSO with splicing strategy requires only 1.97s. By further leveraging appropriate symmetries, the highly efficient ML-SSO is employed to design active shape changes of 4D-printed lattice structures. The new ML-SSO approach thus provides a highly efficient tool for the design of various 4D-printed, shape-morphing AC structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3137874883发布了新的文献求助10
1秒前
蒋若风发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
狗剩子完成签到,获得积分10
1秒前
Lvj完成签到,获得积分10
2秒前
bkagyin应助马保国123采纳,获得10
2秒前
2秒前
3秒前
大个应助乐观的幼珊采纳,获得10
3秒前
3秒前
3秒前
3秒前
顺顺完成签到,获得积分10
5秒前
5秒前
小马甲应助a1oft采纳,获得10
5秒前
Keke完成签到,获得积分10
5秒前
6秒前
自然秋柳发布了新的文献求助10
6秒前
candy6663339完成签到,获得积分10
6秒前
weiwei完成签到,获得积分10
6秒前
大个应助苗条的山晴采纳,获得10
7秒前
努力发一区完成签到 ,获得积分0
7秒前
蒋时晏应助恶恶么v采纳,获得30
7秒前
8秒前
8秒前
gennp完成签到,获得积分10
8秒前
gg完成签到,获得积分10
8秒前
1111发布了新的文献求助10
8秒前
情怀应助wjh采纳,获得10
9秒前
9秒前
Hey关闭了Hey文献求助
9秒前
学渣向下完成签到,获得积分10
9秒前
咚咚咚发布了新的文献求助10
9秒前
10秒前
willen完成签到,获得积分10
10秒前
10秒前
奇怪的柒完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759