CNN-GRU-FF: a double-layer feature fusion-based network intrusion detection system using convolutional neural network and gated recurrent units

卷积神经网络 计算智能 计算机科学 模式识别(心理学) 人工智能 特征(语言学) 图层(电子) 入侵检测系统 人工神经网络 材料科学 纳米技术 哲学 语言学
作者
Yakubu Imrana,Youzhi Xiang,Liaqat Ali,Adeeb Noor,Kwabena Sarpong,Muhammed Amin Abdullah
出处
期刊:Complex & Intelligent Systems
标识
DOI:10.1007/s40747-023-01313-y
摘要

Abstract Identifying and preventing malicious network behavior is a challenge for establishing a secure network communication environment or system. Malicious activities in a network system can seriously threaten users’ privacy and potentially jeopardize the entire network infrastructure and functions. Furthermore, cyber-attacks have grown in complexity and number due to the ever-evolving digital landscape of computer and network devices in recent years. Analyzing network traffic using network intrusion detection systems (NIDSs) has become an integral security measure in modern networks to identify malicious and suspicious activities. However, most intrusion detection datasets contain imbalance classes, making it difficult for most existing classifiers to achieve good performance. In this paper, we propose a double-layer feature extraction and feature fusion technique (CNN-GRU-FF), which uses a modified focal loss function instead of the traditional cross-entropy to handle the class imbalance problem in the IDS datasets. We use the NSL-KDD and UNSW-NB15 datasets to evaluate the effectiveness of the proposed model. From the research findings, it is evident our CNN-GRU-FF method obtains a detection rate of 98.22% and 99.68% using the UNSW-NB15 and NSL-KDD datasets, respectively while maintaining low false alarm rates on both datasets. We compared the proposed model’s performance with seven baseline algorithms and other published methods in literature. It is evident from the performance results that our proposed method outperforms the state-of-the-art network intrusion detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助栗子栗栗子采纳,获得10
1秒前
帅气面包完成签到,获得积分10
1秒前
王小美发布了新的文献求助30
2秒前
2秒前
希望天下0贩的0应助晶晶采纳,获得10
3秒前
3秒前
4秒前
充电宝应助御青白少采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
英俊的铭应助呼叫554采纳,获得10
7秒前
查理发布了新的文献求助10
7秒前
8秒前
冷酷愚志完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
爆米花应助wang采纳,获得10
10秒前
11秒前
呵呵发布了新的文献求助10
12秒前
12秒前
Christ发布了新的文献求助10
12秒前
quhayley发布了新的文献求助10
12秒前
爆米花应助frank采纳,获得10
13秒前
14秒前
马婷婷完成签到,获得积分10
14秒前
笑颜完成签到,获得积分20
14秒前
星辰大海应助cxt1346采纳,获得10
15秒前
15秒前
15秒前
宗嘻嘻发布了新的文献求助10
16秒前
16秒前
17秒前
呼叫554完成签到,获得积分10
17秒前
晶晶发布了新的文献求助10
18秒前
Han发布了新的文献求助10
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309117
求助须知:如何正确求助?哪些是违规求助? 2942485
关于积分的说明 8509235
捐赠科研通 2617584
什么是DOI,文献DOI怎么找? 1430190
科研通“疑难数据库(出版商)”最低求助积分说明 664086
邀请新用户注册赠送积分活动 649251