清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Establishment of machine learning-based tool for early detection of pulmonary embolism

肺栓塞 机器学习 人工智能 医学 计算机科学 心脏病学
作者
Lijue Liu,Yaming Li,Na Liu,Jingmin Luo,Jinhai Deng,Weixiong Peng,Yongping Bai,Guogang Zhang,Guihu Zhao,Ning Yang,Chuanchang Li,Xueying Long
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107977-107977 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107977
摘要

Pulmonary embolism (PE) is a complex disease with high mortality and morbidity rate, leading to increasing society burden. However, current diagnosis is solely based on symptoms and laboratory data despite its complex pathology, which easily leads to misdiagnosis and missed diagnosis by inexperienced doctors. Especially, CT pulmonary angiography, the gold standard method, is not widely available. In this study, we aim to establish a rapid and accurate screening model for pulmonary embolism using machine learning technology. Importantly, data required for disease prediction are easily accessed, including routine laboratory data and medical record information of patients. We extracted features from patients' routine laboratory results and medical records, including blood routine, biochemical group, blood coagulation routine and other test results, as well as symptoms and medical history information. Samples with a feature loss rate greater than 0.8 were deleted from the original database. Data from 4723 cases were retained, 231 of which were positive for pulmonary embolism. 50 features were retained through the positive and negative statistical hypothesis testing which was used to build the predictive model. In order to avoid identification as majority-class samples caused by the imbalance of sample proportion, we used the method of Synthetic Minority Oversampling Technique (SMOTE) to increase the amount of information on minority samples. Five typical machine learning algorithms were used to model the screening of pulmonary embolism, including Support Vector Machines, Logistic Regression, Random Forest, XGBoost, and Back Propagation Neural Networks. To evaluate model performance, sensitivity, specificity and AUC curve were analyzed as the main evaluation indicators. Furthermore, a baseline model was established using the characteristics of the pulmonary embolism guidelines as a comparison model. We found that XGBoost showed better performance compared to other models, with the highest sensitivity and specificity (0.99 and 0.99, respectively). Moreover, it showed significant improvement in performance compared to the baseline model (sensitivity and specificity were 0.76 and 0.76 respectively). More important, our model showed low missed diagnosis rate (0.46) and high AUC value (0.992). Finally, the calculation time of our model is only about 0.05 s to obtain the possibility of pulmonary embolism. In this study, five machine learning classification models were established to assess the likelihood of patients suffering from pulmonary embolism, and the XGBoost model most significantly improved the precision, sensitivity, and AUC for pulmonary embolism screening. Collectively, we have established an AI-based model to accurately predict pulmonary embolism at early stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WSY完成签到 ,获得积分10
刚刚
2秒前
酷炫的煎饼完成签到 ,获得积分10
3秒前
ChiahaoKuo完成签到 ,获得积分10
4秒前
yzq完成签到,获得积分20
5秒前
Amy完成签到 ,获得积分10
7秒前
15秒前
果酱发布了新的文献求助10
18秒前
yzq关注了科研通微信公众号
20秒前
自然亦凝完成签到,获得积分10
21秒前
浮游应助求助的小鸟采纳,获得10
22秒前
23秒前
一通百通发布了新的文献求助30
27秒前
果酱完成签到,获得积分10
27秒前
隐形曼青应助周曦采纳,获得10
35秒前
yzq发布了新的文献求助30
37秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
54秒前
U87完成签到,获得积分10
55秒前
1分钟前
周曦发布了新的文献求助10
1分钟前
邓代容完成签到 ,获得积分0
1分钟前
Salvator完成签到 ,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
南浔完成签到 ,获得积分10
1分钟前
1分钟前
sunwsmile完成签到 ,获得积分10
1分钟前
JamesPei应助wzbc采纳,获得10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
无花果应助wzbc采纳,获得10
1分钟前
carl完成签到 ,获得积分10
1分钟前
xun完成签到,获得积分20
2分钟前
可爱紫文完成签到 ,获得积分10
2分钟前
梅子完成签到 ,获得积分10
2分钟前
长毛象完成签到 ,获得积分10
2分钟前
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
2分钟前
wzbc发布了新的文献求助10
3分钟前
huiluowork完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079238
求助须知:如何正确求助?哪些是违规求助? 4297595
关于积分的说明 13388491
捐赠科研通 4120645
什么是DOI,文献DOI怎么找? 2256742
邀请新用户注册赠送积分活动 1261052
关于科研通互助平台的介绍 1194981