Attention-based deep meta-transfer learning for few-shot fine-grained fault diagnosis

计算机科学 学习迁移 人工智能 断层(地质) 先验与后验 一般化 特征(语言学) 深度学习 特征提取 过程(计算) 粒度 模式识别(心理学) 数据挖掘 机器学习 地震学 地质学 认识论 操作系统 数学分析 哲学 语言学 数学
作者
Chuanjiang Li,Shaobo Li,Huan Wang,Fengshou Gu,Andrew Ball
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:264: 110345-110345 被引量:101
标识
DOI:10.1016/j.knosys.2023.110345
摘要

Deep learning-based fault diagnosis methods have made tremendous progress in recent years; however, most of these methods are coarse grained and data demanding that cannot find the root causes of mechanical system failures at a finer granularity with limited fault data. Therefore, in this study, we first investigate the few-shot fine-grained fault diagnosis (FSFGFD) problem, with the aim of identifying novel fine-grained faults under different working conditions using only few samples from each class. To address the difficulties of fine-grained fault feature extraction and poor model generalization to unseen few-shot faults in FSFGFD tasks, a novel attention-based deep meta-transfer learning (ADMTL) method is proposed. First, the failure modes under different working conditions are considered as fine-grained faults, and their raw signals are transformed into time–frequency images. Based on this, an attention mechanism is introduced to guide the feature extractor of the ADMTL on what information to learn. The ADMTL then follows a three-stage learning process of pre-training, meta-transfer, and meta-adaptation to achieve fast adaptation to new fine-grained faults using a priori knowledge gained from known faults. Furthermore, a parameter modulation strategy is employed to adaptively update the pre-trained network during the meta-transfer process. The comprehensive experimental results of three case studies demonstrate the superiority of our method over state-of-the-art methods. The proposed method achieves excellent performance with an average accuracy of 99.08%, 95.86%, and 77.74% for FSFGFD tasks when performing meta-transfer within the same machine and between different machines, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助刘wt采纳,获得10
刚刚
传奇3应助Teriri采纳,获得10
1秒前
阳光怀亦发布了新的文献求助10
1秒前
有的没的发布了新的文献求助10
2秒前
YML发布了新的文献求助10
2秒前
2秒前
4秒前
5秒前
5秒前
5秒前
6秒前
erfc完成签到,获得积分10
7秒前
7秒前
赵岩完成签到,获得积分20
7秒前
虚心的山柏完成签到,获得积分10
7秒前
8秒前
共享精神应助chang采纳,获得10
8秒前
郑雄完成签到,获得积分10
8秒前
songvv发布了新的文献求助10
8秒前
8秒前
ma完成签到 ,获得积分10
8秒前
cxqqq发布了新的文献求助10
9秒前
9秒前
Jasper应助swy采纳,获得30
10秒前
YML完成签到,获得积分10
10秒前
丘比特应助学习猴采纳,获得10
10秒前
迅速自行车应助yu采纳,获得10
10秒前
11秒前
蚂蚁Y嘿应助晕晕采纳,获得10
11秒前
陈隆完成签到,获得积分10
11秒前
彳亍发布了新的文献求助30
11秒前
12秒前
740872463完成签到,获得积分10
13秒前
潮湿梦完成签到,获得积分10
13秒前
苏桑焉发布了新的文献求助10
13秒前
wy.he应助李李采纳,获得10
13秒前
鼠鼠完成签到 ,获得积分10
14秒前
李健的小迷弟应助songvv采纳,获得10
14秒前
贪玩小小发布了新的文献求助10
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469573
求助须知:如何正确求助?哪些是违规求助? 3062778
关于积分的说明 9080006
捐赠科研通 2752931
什么是DOI,文献DOI怎么找? 1510668
科研通“疑难数据库(出版商)”最低求助积分说明 697958
邀请新用户注册赠送积分活动 697938