Deep learning of interfacial curvature: a symmetry-preserving approach for the volume of fluid method

计算机科学 曲率 人工神经网络 对称(几何) 网格 算法 解算器 深度学习 流体体积法 规则网格 人工智能 计算科学 流量(数学) 几何学 数学 程序设计语言
作者
Asim Önder,Philip L.‐F. Liu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2206.06041
摘要

Estimation of interface curvature in surface-tension dominated flows is a remaining challenge in Volume of Fluid (VOF) methods. Data-driven methods are recently emerging as a promising alternative in this domain. They outperform conventional methods on coarser grids but diverge with grid refinement. Furthermore, unlike conventional methods, data-driven methods are sensitive to coordinate system and sign conventions, thus often fail to capture basic symmetry patterns in interfaces. The present work proposes a new data-driven strategy which conserves the symmetries in a cost-effective way and delivers consistent results over a wide range of grids. The method is based on artificial neural networks with deep multilayer perceptron (MLP) architecture which read volume fraction fields on regular grids. The anti-symmetries are preserved with no additional cost by employing a neural network model with input normalization, odd-symmetric activation functions and bias-free neurons. The symmetries are further conserved by height-function inspired rotations and averaging over several different orientations. The new symmetry-preserving MLP model is implemented into a flow solver (OpenFOAM) and tested against conventional schemes in the literature. It shows superior performance compared to its standard counterpart and has similar accuracy and convergence properties with the state-of-the-art conventional method despite using smaller stencil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
123456发布了新的文献求助10
刚刚
spirit完成签到 ,获得积分10
刚刚
元谷雪发布了新的文献求助10
1秒前
七个小矮人完成签到,获得积分10
1秒前
微尘之末完成签到,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
搞快点完成签到,获得积分10
2秒前
2秒前
炙热嘉懿发布了新的文献求助10
2秒前
善学以致用应助Liam采纳,获得10
3秒前
LMH完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
vobin发布了新的文献求助10
6秒前
6秒前
6秒前
Hello应助orange9采纳,获得10
7秒前
xingchangrui发布了新的文献求助10
7秒前
Hailey发布了新的文献求助10
7秒前
Yuanyuan完成签到,获得积分10
7秒前
Anoxia完成签到,获得积分10
8秒前
8秒前
HAPPY完成签到,获得积分10
8秒前
W sir完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
77完成签到,获得积分10
10秒前
Anoxia发布了新的文献求助10
10秒前
梦回天明关注了科研通微信公众号
10秒前
小黄发布了新的文献求助10
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441016
求助须知:如何正确求助?哪些是违规求助? 3037387
关于积分的说明 8968794
捐赠科研通 2725927
什么是DOI,文献DOI怎么找? 1495136
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687879