A Comprehensive Survey on Graph Summarization with Graph Neural Networks

自动汇总 计算机科学 标杆管理 图形 人工智能 数据科学 理论计算机科学 深度学习 机器学习 营销 业务
作者
Nasrin Shabani,Jia Wu,Amin Beheshti,Quan Z. Sheng,Jin Foo,Venus Haghighi,Ambreen Hanif,Maryam Shahabikargar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.06114
摘要

As large-scale graphs become more widespread, more and more computational challenges with extracting, processing, and interpreting large graph data are being exposed. It is therefore natural to search for ways to summarize these expansive graphs while preserving their key characteristics. In the past, most graph summarization techniques sought to capture the most important part of a graph statistically. However, today, the high dimensionality and complexity of modern graph data are making deep learning techniques more popular. Hence, this paper presents a comprehensive survey of progress in deep learning summarization techniques that rely on graph neural networks (GNNs). Our investigation includes a review of the current state-of-the-art approaches, including recurrent GNNs, convolutional GNNs, graph autoencoders, and graph attention networks. A new burgeoning line of research is also discussed where graph reinforcement learning is being used to evaluate and improve the quality of graph summaries. Additionally, the survey provides details of benchmark datasets, evaluation metrics, and open-source tools that are often employed in experimentation settings, along with a detailed comparison, discussion, and takeaways for the research community focused on graph summarization. Finally, the survey concludes with a number of open research challenges to motivate further study in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miuu完成签到,获得积分10
刚刚
科研通AI2S应助zhanglongfei采纳,获得10
1秒前
甜甜的盼海完成签到,获得积分10
1秒前
2秒前
小马甲应助义气的三德采纳,获得10
2秒前
2秒前
2秒前
111111完成签到,获得积分10
3秒前
3秒前
言音完成签到 ,获得积分10
3秒前
落后易蓉完成签到,获得积分10
4秒前
Ava应助无辜的思雁采纳,获得10
5秒前
充电宝应助华北走地鸡采纳,获得10
5秒前
Liu1YT关注了科研通微信公众号
6秒前
青菜完成签到,获得积分10
7秒前
飞0802发布了新的文献求助60
7秒前
Renee发布了新的文献求助30
7秒前
7秒前
Foldog完成签到,获得积分10
7秒前
8秒前
个性莺完成签到,获得积分10
8秒前
8秒前
MKing完成签到,获得积分10
9秒前
充电宝应助111采纳,获得10
9秒前
Monicadd给Monicadd的求助进行了留言
9秒前
付银薇发布了新的文献求助10
10秒前
阿千完成签到 ,获得积分10
10秒前
10秒前
sfxnxgu发布了新的文献求助10
11秒前
不敢装睡发布了新的文献求助200
11秒前
坦白Ccc完成签到,获得积分10
11秒前
wang发布了新的文献求助10
11秒前
loyalll发布了新的文献求助10
13秒前
13秒前
www完成签到,获得积分10
14秒前
guo发布了新的文献求助10
14秒前
alho完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助ccccccwq采纳,获得10
16秒前
16秒前
复杂的冬瓜完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905