Explainable AI in big data intelligence of community detection for digitalization e-healthcare services

推荐系统 大数据 计算机科学 图形 加权 投票 机器学习 相似性(几何) 协同过滤 情报检索 人工智能 数据挖掘 理论计算机科学 政治学 图像(数学) 政治 放射科 医学 法学
作者
Arun Kumar Sangaiah,Samira Rezaei,Amir Javadpour,Weizhe Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:136: 110119-110119 被引量:37
标识
DOI:10.1016/j.asoc.2023.110119
摘要

Recommender Systems are designed to analysis the available data in the system to predict user’s desires and provide appropriate personalized suggestions to each user that suits their interests. In this paper, we have developed an explainable medical recommender system that uses graph concepts to provide an interpretable approach to medical data. The presented approach is based on community detection algorithms. It forms a graph between the users based on their similarity scores. Individuals with common interests are then grouped using graph community detection algorithms. Two community detection algorithms have been applied on the graphs of users and physicians in our medical recommender system. The results of applying two community detection algorithms are then used to address the cold start problem. We have identified the most influential users using a graph-based technique that finds the overlapping communities. We claim that using the overlapping graph of communities to address cold start problem will enhance the accuracy of the recommendations. Weighting or voting systems are also applied on the selected users to give feedback to potential consumers where there are n different options in a cluster. The similarity score of the users in the overlapping communities has been used to weight the final recommendation. The accuracy of recommended services depends on the proper selection of target populations. The proposed approach outperforms the use of each one of the community detections separately. The accuracy and precision of the proposed method are 93.06 and 88.34, which exceed the highest achieved accuracy in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张怡博完成签到 ,获得积分10
2秒前
3秒前
天真的tian发布了新的文献求助10
3秒前
热心的咖啡豆完成签到,获得积分10
9秒前
9秒前
10秒前
14秒前
14秒前
sss发布了新的文献求助10
16秒前
19秒前
huang关注了科研通微信公众号
20秒前
关七应助夜谈十记采纳,获得10
20秒前
21秒前
我是老大应助酷酷幻梦采纳,获得10
21秒前
清新的忘幽完成签到,获得积分10
22秒前
顾矜应助cumtxzs采纳,获得10
22秒前
24秒前
Yzh完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
25秒前
天真的tian完成签到,获得积分10
25秒前
下雨的颜色完成签到,获得积分10
26秒前
29秒前
30秒前
deng关注了科研通微信公众号
30秒前
西北望发布了新的文献求助10
30秒前
starry完成签到 ,获得积分10
31秒前
31秒前
酷炫笑翠完成签到,获得积分20
33秒前
赵赵发布了新的文献求助10
36秒前
大菠萝发布了新的文献求助10
36秒前
今后应助酷炫笑翠采纳,获得10
38秒前
西北望完成签到,获得积分10
38秒前
38秒前
39秒前
聪明的鹤完成签到 ,获得积分10
39秒前
Yan完成签到,获得积分10
42秒前
向日葵应助赵赵采纳,获得10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870