Explainable AI in big data intelligence of community detection for digitalization e-healthcare services

推荐系统 大数据 计算机科学 图形 加权 投票 机器学习 相似性(几何) 协同过滤 情报检索 人工智能 数据挖掘 理论计算机科学 政治学 法学 医学 政治 图像(数学) 放射科
作者
Arun Kumar Sangaiah,Samira Rezaei,Amir Javadpour,Weizhe Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:136: 110119-110119 被引量:37
标识
DOI:10.1016/j.asoc.2023.110119
摘要

Recommender Systems are designed to analysis the available data in the system to predict user’s desires and provide appropriate personalized suggestions to each user that suits their interests. In this paper, we have developed an explainable medical recommender system that uses graph concepts to provide an interpretable approach to medical data. The presented approach is based on community detection algorithms. It forms a graph between the users based on their similarity scores. Individuals with common interests are then grouped using graph community detection algorithms. Two community detection algorithms have been applied on the graphs of users and physicians in our medical recommender system. The results of applying two community detection algorithms are then used to address the cold start problem. We have identified the most influential users using a graph-based technique that finds the overlapping communities. We claim that using the overlapping graph of communities to address cold start problem will enhance the accuracy of the recommendations. Weighting or voting systems are also applied on the selected users to give feedback to potential consumers where there are n different options in a cluster. The similarity score of the users in the overlapping communities has been used to weight the final recommendation. The accuracy of recommended services depends on the proper selection of target populations. The proposed approach outperforms the use of each one of the community detections separately. The accuracy and precision of the proposed method are 93.06 and 88.34, which exceed the highest achieved accuracy in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王治豪发布了新的文献求助10
刚刚
鱼鱼发布了新的文献求助10
1秒前
充电宝应助坐亭下采纳,获得10
2秒前
弘一完成签到,获得积分10
2秒前
2秒前
Inscription发布了新的文献求助10
2秒前
如果发布了新的文献求助10
3秒前
4秒前
追梦完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
朱明月完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
清秀映秋完成签到,获得积分10
5秒前
KYG12345发布了新的文献求助10
5秒前
5秒前
6秒前
翻羽完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
斯文败类应助资白玉采纳,获得10
8秒前
鱼鱼完成签到,获得积分10
8秒前
haifeng发布了新的文献求助10
9秒前
aa完成签到,获得积分10
9秒前
zzz完成签到,获得积分10
9秒前
9秒前
和谐灯泡发布了新的文献求助10
9秒前
艾泽勒发布了新的文献求助10
10秒前
10秒前
大气如雪发布了新的文献求助10
10秒前
letmeknow完成签到,获得积分10
10秒前
贾方硕完成签到,获得积分10
11秒前
稻草人完成签到,获得积分10
12秒前
13秒前
chenhui发布了新的文献求助10
13秒前
13秒前
北克发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723