Explainable AI in big data intelligence of community detection for digitalization e-healthcare services

推荐系统 大数据 计算机科学 图形 加权 投票 机器学习 相似性(几何) 协同过滤 情报检索 人工智能 数据挖掘 理论计算机科学 政治学 法学 医学 政治 图像(数学) 放射科
作者
Arun Kumar Sangaiah,Samira Rezaei,Amir Javadpour,Weizhe Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:136: 110119-110119 被引量:37
标识
DOI:10.1016/j.asoc.2023.110119
摘要

Recommender Systems are designed to analysis the available data in the system to predict user’s desires and provide appropriate personalized suggestions to each user that suits their interests. In this paper, we have developed an explainable medical recommender system that uses graph concepts to provide an interpretable approach to medical data. The presented approach is based on community detection algorithms. It forms a graph between the users based on their similarity scores. Individuals with common interests are then grouped using graph community detection algorithms. Two community detection algorithms have been applied on the graphs of users and physicians in our medical recommender system. The results of applying two community detection algorithms are then used to address the cold start problem. We have identified the most influential users using a graph-based technique that finds the overlapping communities. We claim that using the overlapping graph of communities to address cold start problem will enhance the accuracy of the recommendations. Weighting or voting systems are also applied on the selected users to give feedback to potential consumers where there are n different options in a cluster. The similarity score of the users in the overlapping communities has been used to weight the final recommendation. The accuracy of recommended services depends on the proper selection of target populations. The proposed approach outperforms the use of each one of the community detections separately. The accuracy and precision of the proposed method are 93.06 and 88.34, which exceed the highest achieved accuracy in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kyleaa发布了新的文献求助10
刚刚
bey发布了新的文献求助10
刚刚
小飞飞完成签到,获得积分10
1秒前
1秒前
伊戈达拉一个大拉完成签到,获得积分10
2秒前
niat发布了新的文献求助10
2秒前
2秒前
卡卡123发布了新的文献求助10
3秒前
轻松的惜芹应助苦哈哈采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
李爱国应助樊小雾采纳,获得10
5秒前
5High_0发布了新的文献求助10
6秒前
搜集达人应助祥子的骆驼采纳,获得10
6秒前
小二郎应助mm采纳,获得10
6秒前
小马甲应助dsfsd采纳,获得10
6秒前
7秒前
HenryXiao发布了新的文献求助10
7秒前
天天快乐应助花生采纳,获得10
7秒前
8秒前
金不换完成签到,获得积分10
8秒前
8秒前
hxl发布了新的文献求助30
8秒前
9秒前
VelesAlexei完成签到,获得积分10
9秒前
田様应助小粉红wow~~~采纳,获得10
10秒前
10秒前
猪猪hero发布了新的文献求助10
10秒前
hdh发布了新的文献求助10
11秒前
coke发布了新的文献求助10
11秒前
硬膜之下完成签到,获得积分10
11秒前
zyzhnu完成签到,获得积分10
11秒前
大力凡儿完成签到 ,获得积分10
12秒前
笑羽发布了新的文献求助10
12秒前
12秒前
Ryuki完成签到 ,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650