Explainable AI in big data intelligence of community detection for digitalization e-healthcare services

推荐系统 大数据 计算机科学 图形 加权 投票 机器学习 相似性(几何) 协同过滤 情报检索 人工智能 数据挖掘 理论计算机科学 政治学 法学 医学 政治 图像(数学) 放射科
作者
Arun Kumar Sangaiah,Samira Rezaei,Amir Javadpour,Weizhe Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:136: 110119-110119 被引量:37
标识
DOI:10.1016/j.asoc.2023.110119
摘要

Recommender Systems are designed to analysis the available data in the system to predict user’s desires and provide appropriate personalized suggestions to each user that suits their interests. In this paper, we have developed an explainable medical recommender system that uses graph concepts to provide an interpretable approach to medical data. The presented approach is based on community detection algorithms. It forms a graph between the users based on their similarity scores. Individuals with common interests are then grouped using graph community detection algorithms. Two community detection algorithms have been applied on the graphs of users and physicians in our medical recommender system. The results of applying two community detection algorithms are then used to address the cold start problem. We have identified the most influential users using a graph-based technique that finds the overlapping communities. We claim that using the overlapping graph of communities to address cold start problem will enhance the accuracy of the recommendations. Weighting or voting systems are also applied on the selected users to give feedback to potential consumers where there are n different options in a cluster. The similarity score of the users in the overlapping communities has been used to weight the final recommendation. The accuracy of recommended services depends on the proper selection of target populations. The proposed approach outperforms the use of each one of the community detections separately. The accuracy and precision of the proposed method are 93.06 and 88.34, which exceed the highest achieved accuracy in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
义气大象完成签到,获得积分10
1秒前
大方嵩发布了新的文献求助10
1秒前
Cacilhas完成签到 ,获得积分10
1秒前
0000发布了新的文献求助30
1秒前
豆子发布了新的文献求助10
1秒前
Jenny应助木野狐采纳,获得10
1秒前
Khr1stINK发布了新的文献求助10
2秒前
牛牛完成签到,获得积分10
3秒前
3秒前
3秒前
li完成签到,获得积分10
3秒前
无花果应助发嗲的忆寒采纳,获得30
3秒前
xiaotudou95应助excellent_shit采纳,获得10
4秒前
btcat完成签到,获得积分10
4秒前
小蘑菇应助搬砖道人采纳,获得10
5秒前
思源应助校长采纳,获得10
5秒前
鸣隐完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
8秒前
8秒前
科研通AI5应助yx采纳,获得10
8秒前
9秒前
hym完成签到,获得积分10
9秒前
马静雨关注了科研通微信公众号
9秒前
111222完成签到,获得积分20
9秒前
10秒前
10秒前
三卡车安排你完成签到,获得积分10
11秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
曾经以亦完成签到,获得积分10
13秒前
所所应助发疯的游子采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794