亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable AI in big data intelligence of community detection for digitalization e-healthcare services

推荐系统 大数据 计算机科学 图形 加权 投票 机器学习 相似性(几何) 协同过滤 情报检索 人工智能 数据挖掘 理论计算机科学 政治学 法学 医学 政治 图像(数学) 放射科
作者
Arun Kumar Sangaiah,Samira Rezaei,Amir Javadpour,Weizhe Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:136: 110119-110119 被引量:37
标识
DOI:10.1016/j.asoc.2023.110119
摘要

Recommender Systems are designed to analysis the available data in the system to predict user’s desires and provide appropriate personalized suggestions to each user that suits their interests. In this paper, we have developed an explainable medical recommender system that uses graph concepts to provide an interpretable approach to medical data. The presented approach is based on community detection algorithms. It forms a graph between the users based on their similarity scores. Individuals with common interests are then grouped using graph community detection algorithms. Two community detection algorithms have been applied on the graphs of users and physicians in our medical recommender system. The results of applying two community detection algorithms are then used to address the cold start problem. We have identified the most influential users using a graph-based technique that finds the overlapping communities. We claim that using the overlapping graph of communities to address cold start problem will enhance the accuracy of the recommendations. Weighting or voting systems are also applied on the selected users to give feedback to potential consumers where there are n different options in a cluster. The similarity score of the users in the overlapping communities has been used to weight the final recommendation. The accuracy of recommended services depends on the proper selection of target populations. The proposed approach outperforms the use of each one of the community detections separately. The accuracy and precision of the proposed method are 93.06 and 88.34, which exceed the highest achieved accuracy in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助读书的时候采纳,获得10
7秒前
木木夕发布了新的文献求助10
11秒前
20秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
21秒前
24秒前
科研通AI5应助读书的时候采纳,获得10
25秒前
木木夕完成签到,获得积分10
25秒前
30秒前
科研通AI5应助读书的时候采纳,获得10
43秒前
科研通AI5应助读书的时候采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
1分钟前
传奇3应助读书的时候采纳,获得10
1分钟前
科研通AI5应助Blackrose2412采纳,获得10
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
千里草完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
幸运的姜姜完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935426
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058843
捐赠科研通 3977788
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107387