Gain-loss separability in human- but not computer-based changes of mind

背景(考古学) 建议(编程) 心理学 延迟(音频) 自动化 计算机科学 领域(数学分析) 不对称 社会心理学 认知心理学 工程类 数学 机械工程 古生物学 电信 数学分析 物理 量子力学 生物 程序设计语言
作者
Yongling Lin,Pengfei Xu,Jiayu Fan,Ruolei Gu,Yuejia Luo
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:143: 107712-107712 被引量:1
标识
DOI:10.1016/j.chb.2023.107712
摘要

The effect of human-based advice on decision-making represents a "gain-loss asymmetry," as people tend to conform to others' advice in the loss than in the gain domain; however, it is unknown whether the same is true for automatically generated advice. To address a research gap in the literature created by ignoring the gain-loss dimension, we compared the utilization of human- and computer-based advices in the gain and loss domains, separately. Sixty-seven college volunteers were given an opportunity to change their initial decision in a gain- or loss-related context after receiving human- or computer-based advice. Event-related potentials were recorded including the N2 (reflecting psychological conflict) and P3 (reflecting subjective confidence) components. Behavioral data revealed a classic "gain-loss asymmetry" effect in the human-based condition, but not in the computer-based condition, indicating that computerized advice utilization remained prominent across different domains. Moreover, the human-based condition showed a larger option-evoked P3 in the gain than in the loss domain, but no difference was found for the computer-based condition; P3 latency was longer in the human-than in the computer-based condition. These findings support the "automation bias" hypothesis (i.e., automations are trusted more than humans), and may help develop automated advice systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理雨筠完成签到,获得积分10
刚刚
Ava应助Chen采纳,获得10
1秒前
1秒前
1秒前
Xing发布了新的文献求助10
1秒前
w.h发布了新的文献求助10
2秒前
搜集达人应助狼来了aas采纳,获得10
3秒前
4秒前
点点发布了新的文献求助10
4秒前
6秒前
6秒前
blingbling完成签到,获得积分10
6秒前
6秒前
黄啊涛发布了新的文献求助10
6秒前
6秒前
嘻嘻发布了新的文献求助30
6秒前
7秒前
7秒前
10秒前
10秒前
科研123发布了新的文献求助10
10秒前
Rainbow发布了新的文献求助10
10秒前
10秒前
米花完成签到 ,获得积分10
10秒前
凝子老师发布了新的文献求助10
11秒前
flying蝈蝈完成签到,获得积分10
11秒前
Rein完成签到,获得积分10
11秒前
11秒前
Zxc发布了新的文献求助10
11秒前
nininidoc完成签到,获得积分10
12秒前
123号发布了新的文献求助10
14秒前
Chen发布了新的文献求助10
15秒前
汉堡包应助caoyy采纳,获得10
15秒前
阳阳发布了新的文献求助10
15秒前
田所浩二完成签到 ,获得积分10
15秒前
15秒前
华仔应助奶糖采纳,获得30
16秒前
动力小滋完成签到,获得积分10
16秒前
ding应助瑶一瑶采纳,获得10
19秒前
fmwang完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849