Combining Group-Contribution Concept and Graph Neural Networks Toward Interpretable Molecular Property Models

可解释性 计算机科学 人工智能 概化理论 机器学习 人工神经网络 图形 分子图 群(周期表) 理论计算机科学 化学 数学 统计 有机化学
作者
Adem R.N. Aouichaoui,Fan Fan,Seyed Soheil Mansouri,Jens Abildskov,Gürkan Sin
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 725-744 被引量:21
标识
DOI:10.1021/acs.jcim.2c01091
摘要

Quantitative structure-property relationships (QSPRs) are important tools to facilitate and accelerate the discovery of compounds with desired properties. While many QSPRs have been developed, they are associated with various shortcomings such as a lack of generalizability and modest accuracy. Albeit various machine-learning and deep-learning techniques have been integrated into such models, another shortcoming has emerged in the form of a lack of transparency and interpretability of such models. In this work, two interpretable graph neural network (GNN) models (attentive group-contribution (AGC) and group-contribution-based graph attention (GroupGAT)) are developed by integrating fundamentals using the concept of group contributions (GC). The interpretability consists of highlighting the substructure with the highest attention weights in the latent representation of the molecules using the attention mechanism. The proposed models showcased better performance compared to classical group-contribution models, as well as against various other GNN models describing the aqueous solubility, melting point, and enthalpies of formation, combustion, and fusion of organic compounds. The insights provided are consistent with insights obtained from the semiempirical GC models confirming that the proposed framework allows highlighting the important substructures of the molecules for a specific property.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助江竹兰采纳,获得10
刚刚
Xenia完成签到,获得积分10
1秒前
杳鸢应助lllllll采纳,获得20
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
asdf完成签到,获得积分10
2秒前
愉快的灵槐完成签到,获得积分10
2秒前
ding应助落水无波采纳,获得10
3秒前
3秒前
4秒前
4秒前
summer大魔王完成签到,获得积分10
4秒前
SuperD完成签到,获得积分10
4秒前
彪壮的美女完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
5秒前
脑洞疼应助pcy采纳,获得10
5秒前
5秒前
努力工作的小陆完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
11发布了新的文献求助20
6秒前
Echopotter应助CC采纳,获得10
6秒前
6秒前
6秒前
HEANZ发布了新的文献求助10
6秒前
6秒前
XudongHou完成签到,获得积分10
7秒前
7秒前
文件助手发布了新的文献求助10
7秒前
8秒前
充电宝应助伶俐的如松采纳,获得10
8秒前
lvsehx发布了新的文献求助10
8秒前
Lucas应助jinyu采纳,获得10
9秒前
9秒前
puyuanting发布了新的文献求助10
9秒前
9秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218980
求助须知:如何正确求助?哪些是违规求助? 2867998
关于积分的说明 8159022
捐赠科研通 2535031
什么是DOI,文献DOI怎么找? 1367402
科研通“疑难数据库(出版商)”最低求助积分说明 645052
邀请新用户注册赠送积分活动 618233