可解释性
计算机科学
人工智能
概化理论
机器学习
人工神经网络
图形
分子图
群(周期表)
理论计算机科学
化学
数学
统计
有机化学
作者
Adem R.N. Aouichaoui,Fan Fan,Seyed Soheil Mansouri,Jens Abildskov,Gürkan Sin
标识
DOI:10.1021/acs.jcim.2c01091
摘要
Quantitative structure-property relationships (QSPRs) are important tools to facilitate and accelerate the discovery of compounds with desired properties. While many QSPRs have been developed, they are associated with various shortcomings such as a lack of generalizability and modest accuracy. Albeit various machine-learning and deep-learning techniques have been integrated into such models, another shortcoming has emerged in the form of a lack of transparency and interpretability of such models. In this work, two interpretable graph neural network (GNN) models (attentive group-contribution (AGC) and group-contribution-based graph attention (GroupGAT)) are developed by integrating fundamentals using the concept of group contributions (GC). The interpretability consists of highlighting the substructure with the highest attention weights in the latent representation of the molecules using the attention mechanism. The proposed models showcased better performance compared to classical group-contribution models, as well as against various other GNN models describing the aqueous solubility, melting point, and enthalpies of formation, combustion, and fusion of organic compounds. The insights provided are consistent with insights obtained from the semiempirical GC models confirming that the proposed framework allows highlighting the important substructures of the molecules for a specific property.
科研通智能强力驱动
Strongly Powered by AbleSci AI