Combining Group-Contribution Concept and Graph Neural Networks Toward Interpretable Molecular Property Models

可解释性 计算机科学 人工智能 概化理论 机器学习 人工神经网络 图形 分子图 群(周期表) 理论计算机科学 化学 数学 统计 有机化学
作者
Adem R.N. Aouichaoui,Fan Fan,Seyed Soheil Mansouri,Jens Abildskov,Gürkan Sin
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 725-744 被引量:21
标识
DOI:10.1021/acs.jcim.2c01091
摘要

Quantitative structure-property relationships (QSPRs) are important tools to facilitate and accelerate the discovery of compounds with desired properties. While many QSPRs have been developed, they are associated with various shortcomings such as a lack of generalizability and modest accuracy. Albeit various machine-learning and deep-learning techniques have been integrated into such models, another shortcoming has emerged in the form of a lack of transparency and interpretability of such models. In this work, two interpretable graph neural network (GNN) models (attentive group-contribution (AGC) and group-contribution-based graph attention (GroupGAT)) are developed by integrating fundamentals using the concept of group contributions (GC). The interpretability consists of highlighting the substructure with the highest attention weights in the latent representation of the molecules using the attention mechanism. The proposed models showcased better performance compared to classical group-contribution models, as well as against various other GNN models describing the aqueous solubility, melting point, and enthalpies of formation, combustion, and fusion of organic compounds. The insights provided are consistent with insights obtained from the semiempirical GC models confirming that the proposed framework allows highlighting the important substructures of the molecules for a specific property.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助缓慢含烟采纳,获得10
1秒前
FFFF发布了新的文献求助10
2秒前
2秒前
longyk完成签到,获得积分10
3秒前
3秒前
4秒前
无私雁菱应助Li采纳,获得10
4秒前
5秒前
7秒前
9秒前
小易发布了新的文献求助10
9秒前
Dr桃桃发布了新的文献求助10
10秒前
哲别发布了新的文献求助10
10秒前
香蕉觅云应助longyk采纳,获得10
11秒前
orixero应助鲜艳的芹采纳,获得10
11秒前
科研通AI6应助LIJIngcan采纳,获得10
12秒前
缓慢含烟发布了新的文献求助10
13秒前
Shubin828完成签到,获得积分10
13秒前
FFFF完成签到,获得积分10
14秒前
酱紫完成签到 ,获得积分10
15秒前
无语完成签到 ,获得积分10
16秒前
汪爷爷发布了新的文献求助10
17秒前
缓慢含烟完成签到,获得积分10
17秒前
19秒前
Dr桃桃完成签到,获得积分10
19秒前
19秒前
lxz完成签到 ,获得积分10
19秒前
20秒前
yyy发布了新的文献求助10
20秒前
21秒前
好运大王完成签到,获得积分10
21秒前
impending发布了新的文献求助10
22秒前
24秒前
24秒前
tang完成签到,获得积分10
24秒前
24秒前
望十五月完成签到,获得积分10
27秒前
张姚发布了新的文献求助10
28秒前
yyanxuemin919发布了新的文献求助10
29秒前
吴衡发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866