An Improved Poisson Surface Reconstruction Algorithm based on the Boundary Constraints

八叉树 点云 计算机科学 曲面重建 泊松分布 边界(拓扑) 算法 三维重建 曲面(拓扑) 移动最小二乘法 点(几何) 重建算法 树(集合论) 迭代重建 数学优化 计算机视觉 数学 几何学 应用数学 数学分析 统计
作者
Zhouqi Liu,Lei Wang,Muhammad Tahir,Jin Huang,Tianqi Cheng,Xinping Guo,Yuwei Wang,ChunXiang Liu
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:14 (1) 被引量:4
标识
DOI:10.14569/ijacsa.2023.0140126
摘要

The usage of the point cloud surface reconstruction to generate high-precision 3D models has been widely applied in various fields. In order to deal with the problems of insufficient accuracy, pseudo-surfaces and high time cost caused by the traditional surface reconstruction algorithms of the point cloud data, this paper proposes an improved Poisson surface reconstruction algorithm based on the boundary constraints. For large density point cloud data obtained from 3D laser scanning, the proposed method firstly uses an octree instead of the KD-tree to search the near neighborhood; then, it uses the Open Multi-Processing (OpenMP) to accelerate the normal estimation based on the moving least squares algorithm; meanwhile, the least-cost spanning tree is employed to adjust the consistency of the normal direction; and finally a screened Poisson algorithm with the Neumann boundary constraints is proposed to reconstruct the point cloud. Compared with the traditional methods, the experiments on three open datasets demonstrated that the proposed method can effectively reduce the generation of pseudo-surfaces. The reconstruction time of the proposed algorithm is about 16% shorter than that of the traditional Poisson reconstruction algorithm, and produce better reconstruction results in the term of quantitative analysis and visual comparison.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芈冖完成签到,获得积分10
2秒前
老狗子完成签到,获得积分10
2秒前
3秒前
果冻橙完成签到,获得积分10
3秒前
桐桐应助晚风装满口袋采纳,获得10
4秒前
4秒前
hihi发布了新的文献求助10
4秒前
4秒前
4秒前
陶辞完成签到,获得积分10
4秒前
Hello应助不爱看文献采纳,获得10
5秒前
李健的小迷弟应助zzzzzz采纳,获得10
5秒前
hyf567完成签到,获得积分10
6秒前
YSM完成签到,获得积分0
6秒前
YongLiu完成签到,获得积分10
7秒前
可爱的兔兔完成签到,获得积分10
7秒前
搜集达人应助ares-gxd采纳,获得10
8秒前
姚雨轩完成签到 ,获得积分10
8秒前
美好如凡发布了新的文献求助10
8秒前
老狗子发布了新的文献求助10
8秒前
英俊的铭应助Max采纳,获得10
8秒前
嘻嘻完成签到 ,获得积分10
9秒前
beyond完成签到,获得积分10
10秒前
orixero应助Woowon采纳,获得10
10秒前
10秒前
Derrick完成签到,获得积分10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
英俊的铭应助YSM采纳,获得10
15秒前
15秒前
16秒前
糟糕的雨莲完成签到,获得积分20
17秒前
zzzzzz发布了新的文献求助10
18秒前
文献博士完成签到 ,获得积分10
18秒前
外向晓山完成签到,获得积分20
18秒前
JamesPei应助hihi采纳,获得10
18秒前
18秒前
朝qwer完成签到,获得积分20
18秒前
wjy完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369