Non-contact diagnosis for gearbox based on the fusion of multi-sensor heterogeneous data

计算机科学 传感器融合 超参数 干扰(通信) 断层(地质) 噪音(视频) 融合 模式识别(心理学) 人工智能 融合规则 图像融合 数据挖掘 图像(数学) 哲学 语言学 计算机网络 频道(广播) 地震学 地质学
作者
Dingyi Sun,Yongbo Li,Sixiang Jia,Ke Feng,Zheng Liu
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 112-125 被引量:29
标识
DOI:10.1016/j.inffus.2023.01.020
摘要

Non-contact sensing technology plays an important role in the health monitoring of the gearbox. However, a single non-contact measurement is challenging to achieve the simultaneous monitoring of both structural and non-structural damages. In order to explore the fusion mechanism of multi-sensor heterogeneous measurements, acoustic and thermal characteristics of the gearbox under typical fault states are analyzed, and it is verified the fusion of infrared thermal (IRT) images and acoustic data integrates complementary fault information. In this paper, an attention-enhanced information fusion diagnosis network (AIFN-IA) is proposed for the complementary fusion of IRT images and acoustic data. Firstly, the acoustic data is converted into images by the non-hyperparameter encoding method and then fused with IRT images in data-level. Secondly, the limited shuffle attention module is designed to adaptively focus on the fault elements hidden in the complex fusion features. Finally, experimental data verify the effectiveness of the proposed AIFN-IA method in recognizing six structural and non-structural damages of the gearbox. Compared with seven state-of-the-art methods, the proposed AIFN-IA method performs best in extracting discriminating features with the highest diagnosis accuracy. Moreover, the proposed AIFN-IA method can still achieve satisfactory results under the challenges of small sample datasets and strong noise interference, which is more competitive in real industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Forever完成签到,获得积分10
刚刚
刚刚
1秒前
qss8807发布了新的文献求助10
1秒前
vivre223发布了新的文献求助10
2秒前
东桑末榆完成签到,获得积分10
2秒前
小左完成签到 ,获得积分10
3秒前
顾矜应助靳韩羽采纳,获得10
3秒前
4秒前
5秒前
5秒前
小二郎应助qss8807采纳,获得10
5秒前
zhaoaotao完成签到,获得积分10
6秒前
李八百完成签到,获得积分10
7秒前
搞怪白秋发布了新的文献求助10
7秒前
楸霁完成签到,获得积分10
7秒前
ding应助luster采纳,获得10
7秒前
简简单单完成签到,获得积分10
8秒前
8秒前
深情安青应助xm采纳,获得10
8秒前
从容的完成签到 ,获得积分10
8秒前
君姊发布了新的文献求助10
9秒前
稳住完成签到,获得积分10
9秒前
Ray完成签到,获得积分10
10秒前
WH发布了新的文献求助10
10秒前
虚幻孤丹发布了新的文献求助10
10秒前
11秒前
登登发布了新的文献求助10
12秒前
CodeCraft应助楸霁采纳,获得10
12秒前
12秒前
Arzu发布了新的文献求助10
12秒前
12秒前
Hello应助大气乐儿采纳,获得10
14秒前
14秒前
搞怪白秋完成签到,获得积分10
15秒前
cheng发布了新的文献求助10
15秒前
黎明发布了新的文献求助10
17秒前
17秒前
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860