Machine Learning Based on Computed Tomography Pulmonary Angiography in Evaluating Pulmonary Artery Pressure in Patients with Pulmonary Hypertension

医学 肺动脉 肺动脉高压 组内相关 肺动脉造影 接收机工作特性 金标准(测试) 放射科 分割 右肺动脉 心导管术 心脏病学 内科学 人工智能 心理测量学 临床心理学 计算机科学
作者
Nan Zhang,Xin Zhao,Jie Li,Liqun Huang,Haotian Li,Haiyu Feng,Marcos Antônio Garcia,Yunshan Cao,Zhonghua Sun,Senchun Chai
出处
期刊:Journal of Clinical Medicine [MDPI AG]
卷期号:12 (4): 1297-1297 被引量:4
标识
DOI:10.3390/jcm12041297
摘要

Right heart catheterization is the gold standard for evaluating hemodynamic parameters of pulmonary circulation, especially pulmonary artery pressure (PAP) for diagnosis of pulmonary hypertension (PH). However, the invasive and costly nature of RHC limits its widespread application in daily practice.To develop a fully automatic framework for PAP assessment via machine learning based on computed tomography pulmonary angiography (CTPA).A machine learning model was developed to automatically extract morphological features of pulmonary artery and the heart on CTPA cases collected between June 2017 and July 2021 based on a single center experience. Patients with PH received CTPA and RHC examinations within 1 week. The eight substructures of pulmonary artery and heart were automatically segmented through our proposed segmentation framework. Eighty percent of patients were used for the training data set and twenty percent for the independent testing data set. PAP parameters, including mPAP, sPAP, dPAP, and TPR, were defined as ground-truth. A regression model was built to predict PAP parameters and a classification model to separate patients through mPAP and sPAP with cut-off values of 40 mm Hg and 55 mm Hg in PH patients, respectively. The performances of the regression model and the classification model were evaluated by analyzing the intraclass correlation coefficient (ICC) and the area under the receiver operating characteristic curve (AUC).Study participants included 55 patients with PH (men 13; age 47.75 ± 14.87 years). The average dice score for segmentation increased from 87.3% ± 2.9 to 88.2% ± 2.9 through proposed segmentation framework. After features extraction, some of the AI automatic extractions (AAd, RVd, LAd, and RPAd) achieved good consistency with the manual measurements. The differences between them were not statistically significant (t = 1.222, p = 0.227; t = -0.347, p = 0.730; t = 0.484, p = 0.630; t = -0.320, p = 0.750, respectively). The Spearman test was used to find key features which are highly correlated with PAP parameters. Correlations between pulmonary artery pressure and CTPA features show a high correlation between mPAP and LAd, LVd, LAa (r = 0.333, p = 0.012; r = -0.400, p = 0.002; r = -0.208, p = 0.123; r = -0.470, p = 0.000; respectively). The ICC between the output of the regression model and the ground-truth from RHC of mPAP, sPAP, and dPAP were 0.934, 0.903, and 0.981, respectively. The AUC of the receiver operating characteristic curve of the classification model of mPAP and sPAP were 0.911 and 0.833.The proposed machine learning framework on CTPA enables accurate segmentation of pulmonary artery and heart and automatic assessment of the PAP parameters and has the ability to accurately distinguish different PH patients with mPAP and sPAP. Results of this study may provide additional risk stratification indicators in the future with non-invasive CTPA data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼海露完成签到,获得积分10
刚刚
小二郎应助小天使海蒂采纳,获得10
刚刚
1234完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
包容的香菱完成签到,获得积分20
2秒前
2秒前
彭于晏应助冲浪男孩226采纳,获得10
2秒前
3秒前
所所应助小石头采纳,获得10
3秒前
Hoiden完成签到,获得积分10
3秒前
1234发布了新的文献求助10
5秒前
科研通AI5应助lwhxbb采纳,获得10
5秒前
5秒前
5秒前
zyz1998发布了新的文献求助10
6秒前
花城发布了新的文献求助10
7秒前
桐桐应助野性的曼香采纳,获得10
7秒前
鱼头发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助夜王采纳,获得10
9秒前
嘉小良完成签到,获得积分10
10秒前
生生不息完成签到 ,获得积分20
10秒前
Zl完成签到,获得积分10
11秒前
何哈哈发布了新的文献求助10
11秒前
12秒前
百宝发布了新的文献求助10
12秒前
爱听歌土豆关注了科研通微信公众号
12秒前
12秒前
13秒前
温暖发布了新的文献求助10
13秒前
lwhxbb完成签到,获得积分10
13秒前
儒雅谷芹完成签到,获得积分10
14秒前
fandan关注了科研通微信公众号
14秒前
16秒前
小研完成签到,获得积分10
16秒前
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512265
求助须知:如何正确求助?哪些是违规求助? 3094716
关于积分的说明 9224334
捐赠科研通 2789516
什么是DOI,文献DOI怎么找? 1530724
邀请新用户注册赠送积分活动 711092
科研通“疑难数据库(出版商)”最低求助积分说明 706551