RGB-T Semantic Segmentation with Location, Activation, and Sharpening

作者
Gongyang Li,Yike Wang,Zhi Liu,Xinpeng Zhang,Dan Zeng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2022.3208833
摘要

Semantic segmentation is important for scene understanding. To address the scenes of adverse illumination conditions of natural images, thermal infrared (TIR) images are introduced. Most existing RGB-T semantic segmentation methods follow three cross-modal fusion paradigms, i.e ., encoder fusion, decoder fusion, and feature fusion. Some methods, unfortunately, ignore the properties of RGB and TIR features or the properties of features at different levels. In this paper, we propose a novel feature fusion-based network for RGB-T semantic segmentation, named LASNet , which follows three steps of location, activation, and sharpening. The highlight of LASNet is that we fully consider the characteristics of cross-modal features at different levels, and accordingly propose three specific modules for better segmentation. Concretely, we propose a Collaborative Location Module (CLM) for high-level semantic features, aiming to locate all potential objects. We propose a Complementary Activation Module for middle-level features, aiming to activate exact regions of different objects. We propose an Edge Sharpening Module (ESM) for low-level texture features, aiming to sharpen the edges of objects. Furthermore, in the training phase, we attach a location supervision and an edge supervision after CLM and ESM, respectively, and impose two semantic supervisions in the decoder part to facilitate network convergence. Experimental results on two public datasets demonstrate that the superiority of our LASNet over relevant state-of-the-art methods. The code and results of our method are available at https://github.com/MathLee/LASNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小雪发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
李依伊发布了新的文献求助10
2秒前
2秒前
windy完成签到,获得积分10
2秒前
lull发布了新的文献求助10
2秒前
3秒前
明亮从梦发布了新的文献求助10
3秒前
Cici发布了新的文献求助10
4秒前
精明念寒发布了新的文献求助10
4秒前
体贴樱桃完成签到,获得积分10
4秒前
4秒前
123完成签到,获得积分10
4秒前
Qiqige完成签到,获得积分10
4秒前
嘟嘟嘟嘟发布了新的文献求助20
5秒前
5秒前
6秒前
水刊保毕业应助TT2022采纳,获得10
7秒前
7秒前
淡淡的日记本完成签到 ,获得积分10
7秒前
lyl19880908应助sometimesawake采纳,获得10
8秒前
8秒前
Tonnyjing应助adhdff采纳,获得10
9秒前
Cici完成签到,获得积分10
10秒前
windy发布了新的文献求助20
10秒前
寻道图强应助gongweiliu采纳,获得30
10秒前
Lucas应助文艺芙采纳,获得10
10秒前
Thi发布了新的文献求助10
11秒前
welch发布了新的文献求助10
11秒前
hh1234发布了新的文献求助10
11秒前
欣然侯猴发布了新的文献求助10
12秒前
科研能发布了新的文献求助10
12秒前
尼克拉倒发布了新的文献求助30
12秒前
追寻的紫易完成签到,获得积分10
13秒前
faaa完成签到,获得积分10
13秒前
明亮从梦完成签到,获得积分10
14秒前
Cimon发布了新的文献求助10
15秒前
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083